Catalysis Surveys from Asia

, Volume 22, Issue 3, pp 123–128 | Cite as

Cu2O/Graphene as an Efficient and Ligand Free Heterogeneous Catalyst for Ullmann Coupling of N–H Containing Compounds with Aryl Halides

  • Yibing Wang
  • Jingru Wang
  • Bing Wang
  • Yingyong Wang
  • Guoqiang Jin
  • Xiangyun Guo


The graphene supported Cu2O nanoparticles were prepared via a two-step liquid-phase method and exhibited high catalytic activity and stability for the Ullmann coupling of aryl halides with N–H containing compounds under mild and ligand-free conditions. The yield of C–N cross-coupling of imidazole with iodobenzene reached up to 97% with 0.5 mol% Cu (vs. reported 5–10 mol%). The high activity and stability of Cu2O/graphene are probably due to the unique structure of graphene, which can make Cu2O nanoparticles highly dispersed and prevent them from aggregation and oxidation.


Cu2Graphene C–N cross-coupling N–H containing compounds Aryl halide 



This work was supported by the National Natural Science Foundation of China (21203233, 21473232 and 21403270).

Supplementary material

10563_2018_9245_MOESM1_ESM.docx (66 kb)
Supplementary material 1 (DOCX 66 KB)


  1. 1.
    Coman SM, Parvulescu VI (2015) Org Process Res Dev 19:1327–1355CrossRefGoogle Scholar
  2. 2.
    Ruiz-Castillo P, Buchwald SL (2016) Chem Rev 116:12564–12649CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ullmann F (1903) Ber Dtsch Chem Ges 36:2382–2384CrossRefGoogle Scholar
  4. 4.
    Goldberg I (1906) Ber Dtsch Chem Ges 39:1691–1692CrossRefGoogle Scholar
  5. 5.
    Hartwig JF (1998) Angew Chem Int Ed 37:2046–2067CrossRefGoogle Scholar
  6. 6.
    Yang BH, Buchwald SL (1999) J Organomet Chem 576:125–146CrossRefGoogle Scholar
  7. 7.
    Antilla JC, Baskin JM, Barder TE, Buchwald SL (2004) J Org Chem 69:5578–5587CrossRefPubMedGoogle Scholar
  8. 8.
    Cristau H-J, Cellier PP, Spindler J-F, Taillefer M (2004) Eur J Org Chem 4:695–709CrossRefGoogle Scholar
  9. 9.
    Kim AY, Lee HJ, Park JC, Kang H, Yang H, Song H, Park KH (2009) Molecules 14:5169–5178CrossRefPubMedGoogle Scholar
  10. 10.
    Huang YZ, Miao H, Zhang QH, Chen C, Xu J (2008) Catal Lett 122:344–348CrossRefGoogle Scholar
  11. 11.
    Huang Q, Zhou LM, Jiang XH, Zhou YF, Fan HW, Lang WC (2014) ACS Appl Mater Interfaces 6:13502–13509CrossRefPubMedGoogle Scholar
  12. 12.
    Xu Y, Wang H, Yu YF, Tian L, Zhao WW, Zhang B (2011) J Phys Chem C 115:15288–15296CrossRefGoogle Scholar
  13. 13.
    Yan XY, Tong XL, Zhang YF, Han XD, Wang YY, Jin GQ, Qin Y, Guo XY (2012) Chem Commun 48:1892–1894CrossRefGoogle Scholar
  14. 14.
    Zhai ZY, Guo XN, Jiao ZF, Jin GQ, Guo XY (2014) Catal Sci Technol 4:4196–4199CrossRefGoogle Scholar
  15. 15.
    Guo XN, Hao CH, Jin GQ, Zhu HY, Guo XY (2014) Angew Chem Int Ed 53:1973–1977CrossRefGoogle Scholar
  16. 16.
    Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY, Boey F, Zhang H (2011) Small 7:1876–1902CrossRefPubMedGoogle Scholar
  17. 17.
    Yang Y, Castano CE, Gupton BF, Reberb AC, Khanna SN (2016) Nanoscale 8:19564–19572CrossRefPubMedGoogle Scholar
  18. 18.
    Frindy S, El Kadib A, Lahcini M, Primo A, Garcia H (2016) ACS Catal 6:3863–3869CrossRefGoogle Scholar
  19. 19.
    Azimi H, Kuhri S, Osvet A, Matt G, Khanzada LS, Lemmer M, Luechinger NA, Larsson MI, Zeira E, Guldi DM, Brabec CJ (2014) J Am Chem Soc 136:7233–7236CrossRefPubMedGoogle Scholar
  20. 20.
    Zhu H, Du ML, Yu DL, Wang Y, Wang LN, Zou ML, Zhang M, Fu YQ (2013) J Mater Chem A 1:919–929CrossRefGoogle Scholar
  21. 21.
    Bhosale MA, Bhanage BM (2016) Adv Powder Technol 27:238–244CrossRefGoogle Scholar
  22. 22.
    Liu XW, Wang FY, Zhen F, Huang JR (2012) RSC Adv 2:7647–7651CrossRefGoogle Scholar
  23. 23.
    Pal J, Ganguly M, Dutta S, Mondal C, Negishib Y, Pal T (2014) CrystEngComm 16:883–893CrossRefGoogle Scholar
  24. 24.
    Pan L, Zou JJ, Zhang TR, Wang SB, Li Z, Wang L, Zhang XW (2014) J Phys Chem C 118:16335–16343CrossRefGoogle Scholar
  25. 25.
    Yin M, Wu CK, Lou YB, Burda C, Koberstein JT, Zhu YM, O’Brien S (2005) J Am Chem Soc 127:9506–9511CrossRefPubMedGoogle Scholar
  26. 26.
    Wang YB, Guo XN, Lü MQ, Zhai ZY, Wang YY, Guo XY (2017) Chin J Catal 38:658–664CrossRefGoogle Scholar
  27. 27.
    Zhang PF, Yuan JY, Li HR, Liu XF, Xu X, Antonietti M, Wang Y (2013) RSC Adv 3:1890–1895CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Coal Conversion, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanPeople’s Republic of China
  2. 2.University of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations