Skip to main content
Log in

Selective Catalytic Reduction of NOx with NH3 on Cu-BTC-derived Catalysts: Influence of Modulation and Thermal Treatment

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In this work, copper-based metal organic frameworks Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylatle), were applied in the conversion of toxic oxynitride into nitrogen at low temperature. Scanning electron microscope (SEM), thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XRD) and other characterization methods were employed to fully understand the properties of the catalysts. We introduced acetic acid into the synthesis process as the modulator of the crystal structure and morphology. The catalytic assessment indicated that compared with the prototype, modified Cu-MOFs materials obtain enhanced catalytic activity for the SCR reaction. Besides, several thermolysis experiments were conducted to explain structure–function relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Müller M, Hermes S, Kähler K, Berg MWEVD, Muhler M, Fischer RA (2008) Chem Mater 20:4576

    Article  Google Scholar 

  2. Xiao B, Paul W, Zhao X (2007) J Am Chem Soc 129:1203

    Article  CAS  Google Scholar 

  3. Yaghi OM, Li G, Li H (1995) Nature 378:703

    Article  CAS  Google Scholar 

  4. Herbst A, Khutia A, Janiak C (2014) Inorg Chem 53:7319

    Article  CAS  Google Scholar 

  5. Montoro C, Linares F, Procopio EQ, Senkovska I, Kaskel S, Galli S, Masciocchi N, Barea E, Navarro JA (2011) J Am Chem Soc 133:11888

    Article  CAS  Google Scholar 

  6. García P, Müller M, Corma A (2014) Chem Sci 5:2979

    Article  Google Scholar 

  7. Fujita M, Kwon YJ, Washizu S, Ogura K (1994) J Am Chem Soc 116:1151

    Article  CAS  Google Scholar 

  8. Hermes S, Schröter MK, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer RW, Fischer RA (2005) Angew Chem Int Ed 44:6237

    Article  CAS  Google Scholar 

  9. Ingleson MJ, Barrio JP, Guilbaud JB, Khimyak YZ, Rosseinsky MJ (2008) Catal Commun 23:2680

    Google Scholar 

  10. Gascon J, Aktay U, Hernandez-Alonso MD, Klink GPMV., Kapteijn F (2009) J Catal 261:75

    Article  CAS  Google Scholar 

  11. Zhang W, Shi Y, Li C, Zhao Q, Li X (2016) Catal Lett 146:1956

    Article  CAS  Google Scholar 

  12. Jiang HX, Zhou JL, Wang CX, Li YH, Chen YF, Zhang MH (2017) Ind Eng Chem Res 56:3542

    Article  CAS  Google Scholar 

  13. Chui SS, Lo SM, Charmant JP, Orpen AG, Williams ID (1999) Science 283:1148

    Article  CAS  Google Scholar 

  14. Kim J, Cho HY, Ahn WS (2012) Catal Surv Asia 16:106

    Article  CAS  Google Scholar 

  15. Wang QM, Shen D, Bülow M, Lau ML, Deng S, Fitch FR, Lemcoff NO, Semanscin J (2002) Microporous Mesoporous Mater 55:217

    Article  CAS  Google Scholar 

  16. Huang WH, Yang GP, Chen J, Chen X, Zhang CP, Wang YY, Shi QZ (2012) Cryst Growth Des 13:66

    Article  Google Scholar 

  17. Jia MC, Chen EY, Menon AG, Tan HY, Hor ATS, Schreyer MK, Xu J (2012) Crystengcomm 15:654

    Google Scholar 

  18. Chowdhury P, Bikkina C, Meister D, Dreisbach F, Gumma S (2009) Microporous Mesoporous Mater 117:406

    Article  CAS  Google Scholar 

  19. Jinchen L, Culp JT, Sittichai N, Bockrath BC, Brian Z, Giovanni G, Karl J (2007) J Phys Chem C 111:9305

    Article  Google Scholar 

  20. Rowsell JL, Yaghi OM (2006) J Am Chem Soc 128:1304

    Article  CAS  Google Scholar 

  21. Stock N, Biswas S (2012) ChemInform 43:933

    Article  Google Scholar 

  22. Yang H, Orefuwa S, Goudy A (2011) Microporous Mesoporous Mater 143:37

    Article  CAS  Google Scholar 

  23. Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P (2011) Chem Eur J 17:6643

    Article  CAS  Google Scholar 

  24. Chen LF, Guo PJ, Qiao MH, Yan SR, Li HX, Shen W, Xu HL, Fan KN (2008) J Catal 257:172

    Article  CAS  Google Scholar 

  25. Tseng IH, Wu JCS, Chou HY (2004) J Catal 221:432

    Article  CAS  Google Scholar 

  26. Decoste JB, Peterson GW, Schindler BJ, Killops KL, Browe MA, Mahle JJ (2013) J Mater Chem A 1:11922

    Article  CAS  Google Scholar 

  27. Chen L, Zhao C, Wei Z, Wang S, Gu Y (2011) Mater Lett 65:446

    Article  CAS  Google Scholar 

  28. Das R, Pachfule P, Banerjee R, Poddar P (2012) Nanoscale 4:591

    Article  CAS  Google Scholar 

  29. Zhang S, Liu H, Sun C, Liu P, Li L, Yang Z, Feng X, Huo F, Lu X (2015) J Mater Chem A 3:5294

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 21506150, 21406159) and also by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifei Chen.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Wang, S., Wang, C. et al. Selective Catalytic Reduction of NOx with NH3 on Cu-BTC-derived Catalysts: Influence of Modulation and Thermal Treatment. Catal Surv Asia 22, 95–104 (2018). https://doi.org/10.1007/s10563-018-9242-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-018-9242-9

Keywords

Navigation