Catalysis Surveys from Asia

, Volume 20, Issue 3, pp 121–132 | Cite as

Recent Advances in Catalytic Decomposition of N2O on Noble Metal and Metal Oxide Catalysts



Catalytic decomposition of nitrous oxide (N2O) is one of the most efficient methods for the removal of N2O which is of high greenhouse potential and ozone-depleting property. Recent progress in the decomposition of N2O has been reviewed with the focus on noble meal and metal oxide catalysts. The influence factors, such as catalyst support, preparation method, alkali metal additives and the reaction conditions (including O2, H2O, SO2, NO and CO2), on the performance of deN2O catalysts have been discussed. Finally, future research direction for the catalytic decomposition of N2O is proposed.


Nitrous oxide Catalytic decomposition Noble metal Metal oxides 



We gratefully acknowledged the financial support from the National Natural Science Foundation of China (21377010), the Beijing Municipal Natural Science Foundation (8162030), the Fundamental Research Funds for the Central Universities (YS1401), State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex (SCAPC201402), and the Program for New Century Excellent Talents of the Chinese Ministry of Education (NCET-13-0650).


  1. 1.
    Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Science 302:1512CrossRefGoogle Scholar
  2. 2.
    Li L, Xu J, Hu J, Han J (2014) Environ Sci Technol 48:5290CrossRefGoogle Scholar
  3. 3.
    Ravishankara R, Daniel JS, Portmann RW (2009) Science 326:123CrossRefGoogle Scholar
  4. 4.
    Russo N, Mescia D, Fino D, Saracco G (2007) Ind Eng Chem Res 46:4226CrossRefGoogle Scholar
  5. 5.
    Komvokis VG, Marnellos GE, Vasalos IA, Triantafyllidis KS (2009) Appl Catal B 89:627CrossRefGoogle Scholar
  6. 6.
    Hermes AC, Hamilton SM, Hopkins WS, Harding DJ, Kerpal C, Meijer G, Fielicke A, Mackenzie SR (2011) J Phys Chem Lett 2:3053CrossRefGoogle Scholar
  7. 7.
    Obalová L, Maniak G, Karásková K, Kovanda F, Kotarba A (2011) Catal Commun 12:1055CrossRefGoogle Scholar
  8. 8.
    Ren Y, Ma Z, Bruce PG (2011) Cryst Eng Commun 13:6955CrossRefGoogle Scholar
  9. 9.
    Xue L, He H, Liu C, Zhang C, Zhang B (2009) Environ Sci Technol 43:890CrossRefGoogle Scholar
  10. 10.
    Rutkowska M, Piwowarska Z, Micek E, Chmielarz L (2015) Microporous Mesoporous Mater 209:54CrossRefGoogle Scholar
  11. 11.
    Zou W, Xie P, Hua W, Wang Y, Kong D, Yue Y, Ma Z, Yang W, Gao Z (2014) J Mol Catal A 394:83CrossRefGoogle Scholar
  12. 12.
    Zhang X, Shen Q, He C, Ma C, Cheng J, Liu Z, Hao Z (2012) Catal Sci Technol 2:1249CrossRefGoogle Scholar
  13. 13.
    Zhang R, Liu N, Lei Z, Chen B (2016) Chem Rev 116:3658CrossRefGoogle Scholar
  14. 14.
    Konsolakis M (2015) ACS Catal 5:6397CrossRefGoogle Scholar
  15. 15.
    Parres-Esclapez S, Illán-Gómez MJ, Lecea CS, Bueno-López A (2010) Appl Catal B 96:370CrossRefGoogle Scholar
  16. 16.
    Komvokis VG, Marti M, Delimitis A, Vasalos LA (2011) Appl Catal B 103:62CrossRefGoogle Scholar
  17. 17.
    Kim SS, Lee SJ, Hong SC (2012) J Ind Eng Chem 18:1263–1266CrossRefGoogle Scholar
  18. 18.
    Yuzaki K, Yarimizu T, Aoyagi K, Ito S, Kunimori K (1998) Catal Today 45:129CrossRefGoogle Scholar
  19. 19.
    Du JM, Kuang WW, Xu HL, Shen W (2008) Appl Catal B 84:490CrossRefGoogle Scholar
  20. 20.
    Oi J, Obuchi A, Bamwenda GR, Ogata A, Yagita H, Kushiyama S, Mizuno K (1997) Appl Catal B 12:277CrossRefGoogle Scholar
  21. 21.
    Amrousse R, Tsutsumi A (2016) Catal Sci Technol 6:438CrossRefGoogle Scholar
  22. 22.
    Marnellos GE, Efthimiadis EA, Vasalos IA (2003) Appl Catal B 46:523CrossRefGoogle Scholar
  23. 23.
    Kim SS, Lee SJ, Hong SC (2011) Chem Eng J 169:173CrossRefGoogle Scholar
  24. 24.
    Parres-Esclapez S, Such-Basañez I, Illan-Gomez MJ, De Lecea CSM, Bueno-Lopez A (2010) J Catal 276:390CrossRefGoogle Scholar
  25. 25.
    Rico-Pérez V, de Lecea CSM, Bueno-López A (2014) Appl Catal A 472:134CrossRefGoogle Scholar
  26. 26.
    Lin Y, Meng T, Ma Z (2015) J Ind Eng Chem 28:138CrossRefGoogle Scholar
  27. 27.
    Piumetti M, Hussain M, Fino D, Russo N (2015) Appl Catal B 165:158CrossRefGoogle Scholar
  28. 28.
    Piumetti M, Bonelli B, Massiani P, Millot Y, Dzwigaj S, Gaberova L, Armandi M, Garrone E (2011) Microporous Mesoporous Mater 142:45CrossRefGoogle Scholar
  29. 29.
    Piumetti M, Bonelli B, Massiani P, Dzwigaj S, Rossetti I, Casale S, Armandi M, Thomas C, Garrone E (2012) Catal Today 179:140CrossRefGoogle Scholar
  30. 30.
    Hussain M, Fino D, Russo N (2012) J Hazard Mater 211–212:255CrossRefGoogle Scholar
  31. 31.
    Lin Q, Huang Y, Wang Y, Li L, Liu X, Lv F, Wang A, Li W, Zhang T (2014) J Mater Chem A 2:5178CrossRefGoogle Scholar
  32. 32.
    Zhao X, Cong Y, Lv F, Li L, Wang X, Zhang T (2010) Chem Commun 46:3028CrossRefGoogle Scholar
  33. 33.
    Dacquin JP, Dujardin C, Granger P (2008) J Catal 253:37CrossRefGoogle Scholar
  34. 34.
    Reddy PSS, Pasha N, Rao MGVC, Lingaiah N, Suryanarayana I, Prasad PSS (2007) Catal Commun 8:1406CrossRefGoogle Scholar
  35. 35.
    Haber J, Nattich M, Machej T (2008) Appl Catal B 77:278CrossRefGoogle Scholar
  36. 36.
    Wei X, Yang XF, Wang AQ, Li L, Liu XY, Zhang T, Mou CY, Li J (2012) J Phys Chem C 116:6222CrossRefGoogle Scholar
  37. 37.
    Ohnishi C, Asano K, Iwamoto S, Chikama K, Inoue M (2007) Catal Today 120:145CrossRefGoogle Scholar
  38. 38.
    Ma Z, Ren Y, Lu Y, Bruce PG (2013) J Nanosci Nanotechnol 13:5093CrossRefGoogle Scholar
  39. 39.
    Chromčáková Ž, Obalová L, Kovanda F, Legut D, Titov A, Ritz M, Fridrichová D, Michalik S, Kuśtrowski P, Jirátová K (2015) Catal Today 257:18CrossRefGoogle Scholar
  40. 40.
    Yoshino H, Ohnishi CH, Hosokawa S, Wada K, Inoue M (2011) J Mater Sci 46:797–805CrossRefGoogle Scholar
  41. 41.
    Stelmachowski P, Maniak G, Kaczmarczyk J, Zasada F, Piskorz W, Kotarba A, Sojka Z (2014) Appl Catal B 146:105CrossRefGoogle Scholar
  42. 42.
    Xue L, Zhang C, He H, Teraoka Y (2007) Catal Today 126:449CrossRefGoogle Scholar
  43. 43.
    Kapteijn F, Mirasol JR, Moulijn JA (1996) Appl Catal B 9:25CrossRefGoogle Scholar
  44. 44.
    Perez-Alonso FJ, Melián-Cabrera I, López Granados M, Kapteijn F, Fierro JLG (2006) J Catal 239:340CrossRefGoogle Scholar
  45. 45.
    Grzybek G, Stelmachowski P, Gudyka S, Indyka P, Sojka Z, Guillén-Hurtado N, Rico-Pérez V, Bueno-López A, Kotarba A (2016) Appl Catal B 180:622CrossRefGoogle Scholar
  46. 46.
    Zhou H, Huang Z, Sun C, Qin F, Xiong D, Shen W, Xu H (2012) Appl Catal B 125:492CrossRefGoogle Scholar
  47. 47.
    Zabilskiy M, Djinović P, Tchernychova E, Tkachenko OP, Kustov LM, Pintar A (2015) ACS Catal 5:5357CrossRefGoogle Scholar
  48. 48.
    Zabilskiy M, Djinović P, Erjavec B, Dražić G, Pintar A (2015) Appl Catal B 163:113CrossRefGoogle Scholar
  49. 49.
    Konsolakis M, Carabineiro SAC, Papista E, Marnellos GE, Tavares PB, Moreira JA, Romaguera-Barcelay Y, Figueiredo JL (2015) Catal Sci Technol 5:3714CrossRefGoogle Scholar
  50. 50.
    Adamski A, Zajac W, Zasada F, Sojka Z (2012) Catal Today 191:129CrossRefGoogle Scholar
  51. 51.
    Zhou H, Hu P, Huang Z, Qin F, Shen W, Xu H (2013) Ind Eng Chem Res 52:4504CrossRefGoogle Scholar
  52. 52.
    Zhang F, Wang X, Zhang X, Turxun M, Yu H, Zhao J (2014) Chem Eng J 256:365CrossRefGoogle Scholar
  53. 53.
    Russo N, Fino D, Saracco G, Specchia V (2007) Catal Today 119:228CrossRefGoogle Scholar
  54. 54.
    Amrousse R, Chang P, Choklati A, Friche A, Rai M, Bachar A, Follet-Houttemane C, Hori K (2013) Catal Sci Technol 3:2288CrossRefGoogle Scholar
  55. 55.
    Yan L, Ren T, Wang X, Ji D, Suo J (2003) Appl Catal B 45:85CrossRefGoogle Scholar
  56. 56.
    Franken T (2015) Palkovits. Appl Catal B 176:298CrossRefGoogle Scholar
  57. 57.
    Liu S, Cong Y, Kappenstein C, Zhang T (2012) Chin J Catal 33:907CrossRefGoogle Scholar
  58. 58.
    Dacquin JP, Lancelot C, Dujardin C, Costa PD, Djega-Mariadassou G, Beaunier P, Kaliaguine S, Vaudreuil S, Royer S, Granger P (2009) Appl Catal B 91:596CrossRefGoogle Scholar
  59. 59.
    Ivanov DV, Pinaeva LG, Sadovskaya EM, Isupova LA (2016) J Mol Catal A 412:34CrossRefGoogle Scholar
  60. 60.
    Li C, Shen Y, Zhu S, Shen S (2014) RSC Adv 4:29107CrossRefGoogle Scholar
  61. 61.
    Pasha N, Lingaiah N, Reddy PSS, Prasad PS (2009) Catal Lett 127:101CrossRefGoogle Scholar
  62. 62.
    Pasha N, Lingaiah N, Babu NS, Reddy PSS, Prasad PS (2008) Catal Commun 10:132CrossRefGoogle Scholar
  63. 63.
    Pasha N, Lingaiah N, Reddy PSS, Prasad PS (2007) Catal Lett 118:64CrossRefGoogle Scholar
  64. 64.
    Stelmachowski P, Maniak G, Kotarba A, Sojka Z (2009) Catal Commun 10:1062CrossRefGoogle Scholar
  65. 65.
    Tursun M, Wang X, Zhang F, Yu H (2015) Catal Commun 65:1CrossRefGoogle Scholar
  66. 66.
    Wu H, Li W, Guo L, Pan Y, Xu X (2011) J Fuel Chem Technol 39:550CrossRefGoogle Scholar
  67. 67.
    Pachatouridou E, Papista E, Iliopoulou EF, Delimitis A, Goula G, Yentekakis IV, Marnellos GE, Konsolakis M (2015) J Environ Chem Eng 3:815CrossRefGoogle Scholar
  68. 68.
    Boissel V, Tahir S, Koh CA (2006) Appl Catal B 64:234CrossRefGoogle Scholar
  69. 69.
    Bueno-López A, Such-Basáňez I, de Lecea CSM (2006) J Catal 244:102CrossRefGoogle Scholar
  70. 70.
    Kumar S, Vinu A, Subrt J, Bakardjieva S, Rayalu S, Teraoka Y, Labhsetwar N (2012) Catal Today 198:125CrossRefGoogle Scholar
  71. 71.
    Centi G, Perathoner S, Vazzana F, Marella M, Tomaselli M, Mantegazza M (2000) Adv Environ Res 4:325CrossRefGoogle Scholar
  72. 72.
    Burch R, Daniells ST, Breen JP, Hu P (2004) J Catal 224:252CrossRefGoogle Scholar
  73. 73.
    Burch R, Daniells ST, Breen JP, Hu P (2004) Catal Lett 94:103CrossRefGoogle Scholar
  74. 74.
    Xue L, Zhang C, He H, Teraoka Y (2007) Appl Catal B 75:167CrossRefGoogle Scholar
  75. 75.
    Paul JF, Perez-Ramirez J, Ample F, Ricart JM (2004) J Phys Chem B 108:17921CrossRefGoogle Scholar
  76. 76.
    Obalováa L, Maniak G, Karásková K, Kovanda F, Kotarba A (2011) Catal Commun 12:1055CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Division of Nuclear Technology and Applications, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations