Catalysis Surveys from Asia

, Volume 20, Issue 2, pp 82–90 | Cite as

Design of a Highly Efficient Indium-Exchanged Heteropolytungstic Acid for Glycerol Esterification with Acetic Acid



A series of highly active, selective, and stable solid indium-exchanged tungstophosphoric acid catalysts had been prepared, characterized and evaluated for bio-derived glycerol esterification with acetic acid to produce valuable biofuel additives. It was found that the Inx/3H3−xPW with nanotube structure owns Lewis acidity and Brønsted acidity in one, which favors for the efficient esterification of glycerol into monoglycerides with higher selectivity. Among all, In0.8H0.6PW presented exceptionally high activity with 88 % conversion and 96 % selectivity to MAG within 30 min of reaction time at 120 °C using 4:1 molar ratio. The better performance came from its remarkable stability, due to the unique Keggin structure, high acidity as well as nanotube structure. In addition, this In0.8H0.6PW catalyst did not suffer from deactivation of water in the six consecutive reaction tests.


Heteropolyacids Nanotube Brønsted acidity Lewis acidity Esterification 



This work was supported by the National Natural Science Foundation of China (20871026). Supported by “the Fundamental Research Funds for the Central Universities” (10JCXK011). Supported by the major projects of Jilin Provincial Science and Technology Department (20140204085GX).

Supplementary material

10563_2016_9209_MOESM1_ESM.doc (222 kb)
Supplementary material 1 (DOC 222 kb)


  1. 1.
    Salvi BL, Panwar NL (2012) Renew Sustain Energy Rev 16:3680–3689CrossRefGoogle Scholar
  2. 2.
    Abad S, Turon X (2012) Biotechnol Adv 30:733–741CrossRefGoogle Scholar
  3. 3.
    Gonçalves CE, Laier LO, Cardoso AL, da Silva MJ (2012) Fuel Process Technol 10:246–252Google Scholar
  4. 4.
    Liu L, Ye XP, Bozell JJ (2012) ChemSusChem 5:1162–1180CrossRefGoogle Scholar
  5. 5.
    Stelmachowski M (2011) Ecol Chem Eng S 18:9–30Google Scholar
  6. 6.
    Serrano-Ruiz JC, Luque R, Sepúlveda-Escribano A (2011) Chem Soc Rev 40:5266–5281CrossRefGoogle Scholar
  7. 7.
    Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2009) Appl Catal B 91:416–422CrossRefGoogle Scholar
  8. 8.
    Nabeshima H, Ito K (1995) JP patent 276787Google Scholar
  9. 9.
    Hofmann P (1985) DE Patent 3,512,497Google Scholar
  10. 10.
    Nomura S, Hyoshi T (1995) JP Patent 203,429Google Scholar
  11. 11.
    Taguchi Y, Oishi A, Ikeda Y, Fujita K, Masuda T (2000) JP Patent 298,099Google Scholar
  12. 12.
    Li E, Xu ZP, Rudolph V (2009) Appl Catal B 88:42–49CrossRefGoogle Scholar
  13. 13.
    Behr A, Gomes JP (2010) Eur Lipid Sci Technol 112:31–50CrossRefGoogle Scholar
  14. 14.
    Melero JA, van Grieken R, Morales G, Paniagua M (2007) Energy Fuels 211:782–791Google Scholar
  15. 15.
    Zhou LM, Al-Zaini E, Adesina AA (2013) Fuel 103:617–625CrossRefGoogle Scholar
  16. 16.
    Goncalves VLC, Pinto BP, Silva JC, Mota CJA (2008) Catal Today 133–135:673–677CrossRefGoogle Scholar
  17. 17.
    Luque R, Budarin V, Clark JH, Macquarrie DJ (2008) Appl Catal B 82:157–162CrossRefGoogle Scholar
  18. 18.
    Liu XM, Ma H, Wu Y, Wang C, Yang M, Yan P, Welz-Biermann U (2011) Green Chem 13:697–701CrossRefGoogle Scholar
  19. 19.
    Gonçalves CE, Laier LO, Silva MJ (2011) Catal Lett 14:11111–11117Google Scholar
  20. 20.
    Trejda M, Stawicka K, Dubinska A, Ziolek M (2012) Catal Today 187:129–134CrossRefGoogle Scholar
  21. 21.
    Jagadeeswaraiah K, Balaraju M, Sai Prasad PS, Lingaiah N (2010) Appl Catal A 386:166–170CrossRefGoogle Scholar
  22. 22.
    Balaraju M, Nikhitha P, Jagadeeswaraiah K, Srilatha K, Sai Prasad PS, Lingaiah N (2010) Fuel Pro Tech 91:249–253CrossRefGoogle Scholar
  23. 23.
    Li W, Oshihara K, Ueda W (1999) Appl Catal A 182:357–363CrossRefGoogle Scholar
  24. 24.
    Khayoon MS, Hameed BH (2012) Appl Catal A 433–434:152–161CrossRefGoogle Scholar
  25. 25.
    Ferreira P, Fonseca IM, Ramos AM, Vital J (2009) Catal Commun 10:481–484CrossRefGoogle Scholar
  26. 26.
    Zhu SH, Zhu YL, Gao XQ, Mo T, Zhu YF, Li YW (2013) Bioresour Technol 130:45–51CrossRefGoogle Scholar
  27. 27.
    Patel A, Singh S (2014) Fuel 118:358–364CrossRefGoogle Scholar
  28. 28.
    Lopez DE, Goodwin JG Jr, Bruce DA (2005) Lotero E Appl Catal A 295:97–105CrossRefGoogle Scholar
  29. 29.
    Hattori H (2010) Top Catal 53:432–438CrossRefGoogle Scholar
  30. 30.
    Yan S, DiMaggio C, Mohan S, Kim M, Salley SO, Simon KY (2010) Top Catal 53:721–736CrossRefGoogle Scholar
  31. 31.
    Borges ME, Díaz L (2012) Renew Sustain Energy Rev 16:2839–2849CrossRefGoogle Scholar
  32. 32.
    Zhu SH, Gao XQ, Dong F, Zhu YL, Zheng HY, Li YW (2013) J Catal 306:155–163CrossRefGoogle Scholar
  33. 33.
    Jagadeeswaraiah K, Ramesh Kumar CH, Sai Prasad PS, Lingaiah N (2014) Catal Sci Technol 4:2969–2977CrossRefGoogle Scholar
  34. 34.
    Loh TP, Chua GL (2006) Chem Commun 26:2739–2749CrossRefGoogle Scholar
  35. 35.
    Rocchiccioli-Deltcheff C, Fournier M, Franck R, Thouvenot R (1983) Inorg Chem 22:207–216CrossRefGoogle Scholar
  36. 36.
    Pizzio LR, Blanco MN (2007) Microporous Mesoporous Mater 103:40–47CrossRefGoogle Scholar
  37. 37.
    Emeis CA (1993) J Catal 141:347CrossRefGoogle Scholar
  38. 38.
    Parry EP (1963) J Catal 2:371–379CrossRefGoogle Scholar
  39. 39.
    Jermy BR, Pandurangan A (2005) J Mol Catal A 237:146–154CrossRefGoogle Scholar
  40. 40.
    Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) Angew Chem 119:4516–4522CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Lab of Polyoxometalate Science of Ministry of EducationNortheast Normal UniversityChangchunPeople’s Republic of China
  2. 2.School of Urban and Environmental SciencesNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations