Advertisement

Catalysis Surveys from Asia

, Volume 20, Issue 1, pp 13–22 | Cite as

An Overview of Selective Oxidation of Alcohols: Catalysts, Oxidants and Reaction Mechanisms

  • Chen Xu
  • Chuanhui Zhang
  • Hong Li
  • Xueyuan Zhao
  • Liang Song
  • Xuebing Li
Article

Abstract

The oxidation of alcohols to carbonyl compounds is one of the most fundamental reactions in synthetic organic chemistry. In order to achieve the realization of dehydrogenation reactions with high atomic efficiency, suitable catalysts and oxidants are considered as the key factors to obtain the optimum activity and aldehydes/ketones selectivity. This review aims to make an overview on the reasonable reaction mechanism and promising catalytic system of alcohols dehydrogenation.

Keywords

Oxidative dehydrogenation Acceptorless dehydrogenation Oxidant Alcohols Aldehydes Ketones Reaction mechanism 

Notes

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 21306214 and 21276263) and “100Talents” program of Chinese Academy of Sciences (Grant No. KJCX2-EW-H05).

References

  1. 1.
    Carey JS, Laffan D, Thomson C, Williams MT (2006) Org Biomol Chem 4:2337CrossRefGoogle Scholar
  2. 2.
    Parmeggiani C, Cardona F (2012) Green Chem 14:547CrossRefGoogle Scholar
  3. 3.
    Ahmad JU, Figiel PJ, Raisanen MT, Leskela M, Repo T (2009) Appl Catal A Gen 371:17CrossRefGoogle Scholar
  4. 4.
    Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311:362CrossRefGoogle Scholar
  5. 5.
    Zhan BZ, Thompson A (2004) Tetrahedron 60:2917CrossRefGoogle Scholar
  6. 6.
    Chen C-T, Kao J-Q, Salunke SB, Lin Y-H (2011) Org Lett 13:26CrossRefGoogle Scholar
  7. 7.
    Hanson SK, Wu R, Silks LAP (2011) Org Lett 13:1908CrossRefGoogle Scholar
  8. 8.
    Johnston EV, Karlsson EA, Tran L-H, Akermark B, Backvall J-E (2010) Eur J Org Chem 2010:1971CrossRefGoogle Scholar
  9. 9.
    Csjernyik G, Ell AH, Fadini L, Pugin B, Backvall J-E (2002) J Org Chem 67:1657CrossRefGoogle Scholar
  10. 10.
    Dijksman A, Marino-Gonzalez A, Payeras AMI, Arends I, Sheldon RA (2001) J Am Chem Soc 123:6826CrossRefGoogle Scholar
  11. 11.
    Marko IE, Giles PR, Tsukazaki M, Chelle-Regnaut I, Urch CJ, Brown SM (1997) J Am Chem Soc 119:12661CrossRefGoogle Scholar
  12. 12.
    Wang GZ, Andreasson U, Backvall JE (1994) J Chem Soc, Chem Commun 1994:1037CrossRefGoogle Scholar
  13. 13.
    Backvall JE, Chowdhury RL, Karlsson U (1991) J Chem Soc, Chem Commun 1991:473CrossRefGoogle Scholar
  14. 14.
    Gowrisankar S, Neumann H, Beller M (2011) Angew Chem Int Ed 50:5139CrossRefGoogle Scholar
  15. 15.
    Liu C, Wang J, Meng L, Deng Y, Li Y, Lei A (2011) Angew Chem Int Ed 50:5144CrossRefGoogle Scholar
  16. 16.
    Gowrisankar S, Neumann H, Gordes D, Thurow K, Jiao H, Beller M (2013) Chemistry 19:15979CrossRefGoogle Scholar
  17. 17.
    Iwahama T, Yoshino Y, Keitoku T, Sakaguchi S, Ishii Y (2000) J Org Chem 65:6502CrossRefGoogle Scholar
  18. 18.
    Matsumoto M, Ito S (1981) J Chem Soc, Chem Commun 1981:907CrossRefGoogle Scholar
  19. 19.
    Tang R, Diamond SE, Neary N, Mares F (1978) J Chem Soc, Chem Commun 1978:562CrossRefGoogle Scholar
  20. 20.
    Bilgrien C, Davis S, Drago RS (1987) J Am Chem Soc 109:3786CrossRefGoogle Scholar
  21. 21.
    Hanyu A, Takezawa E, Sakaguchi S, Ishii Y (1998) Tetrahedron Lett 39:5557CrossRefGoogle Scholar
  22. 22.
    Sheldon RA, Arends I, Ten Brink GJ, Dijksman A (2002) Acc Chem Res 35:774CrossRefGoogle Scholar
  23. 23.
    Dijksman A, Arends I, Sheldon RA (1999) Chem Commun 16:1591CrossRefGoogle Scholar
  24. 24.
    Li XB, Iglesia E (2007) Chem Eur J 13:9324CrossRefGoogle Scholar
  25. 25.
    Amakawa K, Kolenko YV, Villa A, Schuster ME, Csepei L-I, Weinberg G, Wrabetz S, Naumann d’Alnoncourt R, Girgsdies F, Prati L, Schlögl R, Trunschke A (2013) ACS Catal 3:1103CrossRefGoogle Scholar
  26. 26.
    Mallat T, Baiker A (1994) Catal Today 19:247CrossRefGoogle Scholar
  27. 27.
    Matsumoto M, Watanabe N (1984) J Org Chem 49:3435CrossRefGoogle Scholar
  28. 28.
    Nishimura T, Kakiuchi N, Inoue M, Uemura S (2000) Chem Commun 2000:1245CrossRefGoogle Scholar
  29. 29.
    Yamaguchi K, Mizuno N (2002) Angew Chem Int Ed 41:4538CrossRefGoogle Scholar
  30. 30.
    Hou Z, Theyssen N, Brinkmann A, Klementiev KV, Gruenert W, Buehl M, Schmidt W, Spliethoff B, Tesche B, Weidenthaler C, Leitner W (2008) J Catal 258:315CrossRefGoogle Scholar
  31. 31.
    Vinod CP, Wilson K, Lee AF (2011) J Chem Technol Biotechnol 86:161CrossRefGoogle Scholar
  32. 32.
    Hashmi ASK (2007) Chem Rev 107:3180CrossRefGoogle Scholar
  33. 33.
    Wang H, Fan W, He Y, Wang J, Kondo JN, Tatsumi T (2013) J Catal 299:10CrossRefGoogle Scholar
  34. 34.
    Chen Y, Zheng H, Guo Z, Zhou C, Wang C, Borgna A, Yang Y (2011) J Catal 283:34CrossRefGoogle Scholar
  35. 35.
    Makwana VD, Son YC, Howell AR, Suib SL (2002) J Catal 210:46CrossRefGoogle Scholar
  36. 36.
    Gleason N, Guevremont J, Zaera F (2003) J Phys Chem B 107:11133CrossRefGoogle Scholar
  37. 37.
    Xu XP, Friend CM (1992) Surf Sci 260:14CrossRefGoogle Scholar
  38. 38.
    Jia L, Zhang S, Gu F, Ping Y, Guo X, Zhong Z, Su F (2012) Microporous Mesoporous Mater 149:158CrossRefGoogle Scholar
  39. 39.
    Beier MJ, Hansen TW, Grunwaldt J-D (2009) J Catal 266:320CrossRefGoogle Scholar
  40. 40.
    Mitsudome T, Mikami Y, Funai H, Mizugaki T, Jitsukawa K, Kaneda K (2008) Angew Chem Int Ed 47:138CrossRefGoogle Scholar
  41. 41.
    Nagaraju P, Balaraju M, Reddy KM, Prasad PSS, Lingaiah N (2008) Catal Commun 9:1389CrossRefGoogle Scholar
  42. 42.
    Shimizu K-I, Sugino K, Sawabe K, Satsuma A (2009) Chem Eur J 15:2341CrossRefGoogle Scholar
  43. 43.
    Wang JY, Li Y, Peng YQ, Song GH (2014) J Chin Chem Soc 61:517CrossRefGoogle Scholar
  44. 44.
    Ma Z, Yang H, Qin Y, Hao Y, Li G (2010) J Mol Catal A: Chem 331:78CrossRefGoogle Scholar
  45. 45.
    Kwong H-K, Lo P-K, Lau K-C, Lau T-C (2011) Chem Commun 47:4273CrossRefGoogle Scholar
  46. 46.
    Rani S, Bhat BR (2010) Tetrahedron Lett 51:6403CrossRefGoogle Scholar
  47. 47.
    Gharah N, Chakraborty S, Mukherjee AK, Bhattacharyya R (2009) Inorg Chim Acta 362:1089CrossRefGoogle Scholar
  48. 48.
    Barooah N, Sharma S, Sarma BC, Baruah JB (2004) Appl Organomet Chem 18:440CrossRefGoogle Scholar
  49. 49.
    Chattopadhyay T, Kogiso M, Asakawa M, Shimizu T, Aoyagi M (2010) Catal Commun 12:9CrossRefGoogle Scholar
  50. 50.
    Islam SM, Roy AS, Mondal P, Mubarak M, Mondal S, Hossain D, Banerjee S, Santra SC (2011) J Mol Catal A: Chem 336:106CrossRefGoogle Scholar
  51. 51.
    Kato CN, Hasegawa M, Sato T, Yoshizawa A, Inoue T, Mori W (2005) J Catal 230:226CrossRefGoogle Scholar
  52. 52.
    Salavati-Niasari M, Davar F (2006) Inorg Chem Commun 9:304CrossRefGoogle Scholar
  53. 53.
    Velusamy S, Punniyamurthy T (2003) Eur J Org Chem 2003:3913CrossRefGoogle Scholar
  54. 54.
    Ahmad JU, Raisanen MT, Leskela M, Repo T (2012) Appl Catal A Gen 411:180CrossRefGoogle Scholar
  55. 55.
    Figiel PJ, Leskela M, Repo T (2007) Adv Synth Catal 349:1173CrossRefGoogle Scholar
  56. 56.
    Korpi H, Figiel PJ, Lankinen E, Ryan P, Leskela M, Repo T (2007) Eur J Inorg Chem 2007:2465CrossRefGoogle Scholar
  57. 57.
    Korpi H, Lahtinen P, Sippola V, Krause O, Leskela M, Repo T (2004) Appl Catal A Gen 268:199CrossRefGoogle Scholar
  58. 58.
    Lahtinen P, Ahmad JU, Lankinen E, Pihko P, Leskela M, Repo T (2007) J Mol Catal A: Chem 275:228CrossRefGoogle Scholar
  59. 59.
    Lahtinen P, Korpi H, Haavisto E, Leskela M, Repo T (2004) J Comb Chem 6:967CrossRefGoogle Scholar
  60. 60.
    Lahtinen P, Lankinen E, Leskela M, Repo T (2005) Appl Catal A Gen 295:177CrossRefGoogle Scholar
  61. 61.
    Bansal VK, Thankachan PP, Prasad R (2010) Appl Catal A Gen 381:8CrossRefGoogle Scholar
  62. 62.
    Karlin KD, Cruse RW, Gultneh Y, Hayes JC, Zubieta J (1984) J Am Chem Soc 106:3372CrossRefGoogle Scholar
  63. 63.
    Klinman JP (1996) Chem Rev 96:2541CrossRefGoogle Scholar
  64. 64.
    Maurya MR, Singh B, Adao P, Avecilla F, Pessoa JC (2007) Eur J Inorg Chem 2007:5720CrossRefGoogle Scholar
  65. 65.
    Xie JQ, Li JZ, Meng XG, Hu CW, Zeng XC, Li SX (2004) Transit Met Chem 29:388CrossRefGoogle Scholar
  66. 66.
    Wang JM, Yan L, Li GX, Wang XL, Ding Y, Suo JS (2005) Tetrahedron Lett 46:7023CrossRefGoogle Scholar
  67. 67.
    Corma A, Esteve P, Martinez A (1996) Appl Catal A Gen 143:87CrossRefGoogle Scholar
  68. 68.
    Solomon EI, Chen P, Metz M, Lee SK, Palmer AE (2001) Angew Chem Int Ed 40:4570CrossRefGoogle Scholar
  69. 69.
    Fujita K, Furukawa S, Yamaguchi R (2002) J Organomet Chem 649:289CrossRefGoogle Scholar
  70. 70.
    Frei H (2006) Science 313:309CrossRefGoogle Scholar
  71. 71.
    Punniyamurthy T, Velusamy S, Iqbal J (2005) Chem Rev 105:2329CrossRefGoogle Scholar
  72. 72.
    Furukawa S, Shishido T, Teramura K, Tanaka T (2014) ChemPhysChem 15:2665CrossRefGoogle Scholar
  73. 73.
    Thomas A, Fischer A, Goettmann F, Antonietti M, Mueller J-O, Schloegl R, Carlsson JM (2008) J Mater Chem 18:4893CrossRefGoogle Scholar
  74. 74.
    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) Nat Mater 8:76CrossRefGoogle Scholar
  75. 75.
    Zhang P, Wang Y, Li H, Antonietti M (2012) Green Chem 14:1904CrossRefGoogle Scholar
  76. 76.
    Shiraishi Y, Kanazawa S, Sugano Y, Tsukamoto D, Sakamoto H, Ichikawa S, Hirai T (2014) ACS Catal. 4:774CrossRefGoogle Scholar
  77. 77.
    Huda MN, Turner JA (2010) J Appl Phys 107:123703CrossRefGoogle Scholar
  78. 78.
    Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping JD, Fu X, Antonietti M, Wang X (2010) Angew Chem Int Ed 49:441CrossRefGoogle Scholar
  79. 79.
    Nakamura R, Imanishi A, Murakoshi K, Nakato Y (2003) J Am Chem Soc 125:7443CrossRefGoogle Scholar
  80. 80.
    Shiraishi Y, Kanazawa S, Tsukamoto D, Shiro A, Sugano Y, Hirai T (2013) ACS Catal 3:2222CrossRefGoogle Scholar
  81. 81.
    Fidder H, Lauer A, Freyer W, Koeppe B, Heyne K (2009) J Phys Chem A 113:6289CrossRefGoogle Scholar
  82. 82.
    Zhang M, Wang Q, Chen C, Zang L, Ma W, Zhao J (2009) Angew Chem Int Ed 48:6081CrossRefGoogle Scholar
  83. 83.
    Choi J, MacArthur AHR, Brookhart M, Goldman AS (2011) Chem Rev 111:1761CrossRefGoogle Scholar
  84. 84.
    Dobereiner GE, Crabtree RH (2010) Chem Rev 110:681CrossRefGoogle Scholar
  85. 85.
    Marr AC (2012) Catal. Sci Technol 2:279Google Scholar
  86. 86.
    Zhang J, Balaraman E, Leitus G, Milstein D (2011) Organometallics 30:5716CrossRefGoogle Scholar
  87. 87.
    Zhang J, Gandelman M, Shimon LJW, Rozenberg H, Milstein D (2004) Organometallics 23:4026CrossRefGoogle Scholar
  88. 88.
    Fang W, Chen J, Zhang Q, Deng W, Wang Y (2011) Chem Eur J 17:1247CrossRefGoogle Scholar
  89. 89.
    Kon K, Siddiki SMAH, Shimizu K-I (2013) J Catal 304:63CrossRefGoogle Scholar
  90. 90.
    Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K (2004) J Am Chem Soc 126:10657CrossRefGoogle Scholar
  91. 91.
    Shimizu K-I, Kon K, Seto M, Shimura K, Yamazaki H, Kondo JN (2013) Green Chem 15:418CrossRefGoogle Scholar
  92. 92.
    Shimizu K-I, Kon K, Shimura K, Hakim SSMA (2013) J Catal 300:242CrossRefGoogle Scholar
  93. 93.
    Wigington BN, Drummond ML, Cundari TR, Thorn DL, Hanson SK, Scott SL (2012) Chem Eur J 18:14981CrossRefGoogle Scholar
  94. 94.
    Babu KM, Mucalo MR (2003) J Mater Sci Lett 22:1755CrossRefGoogle Scholar
  95. 95.
    Chong YY, Chow WY, Fan WY (2012) J Colloid Interface Sci 369:164CrossRefGoogle Scholar
  96. 96.
    Lesage A, Emsley L, Chabanas M, Coperet C, Basset JM (2002) Angew Chem Int Ed 41:4535CrossRefGoogle Scholar
  97. 97.
    Yi J, Miller JT, Zemlyanov DY, Zhang RH, Dietrich PJ, Ribeiro FH, Suslov S, Abu-Omar MM (2014) Angew Chem Int Ed 53:833CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations