Skip to main content
Log in

Effect of Different Pore Structures on the Surface Textures of the Cu-Doped CeO2 Catalysts and Applied for CO Catalytic Oxidation

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

By using mesoporous silica KIT-6 with different hydrothermal temperature as a template, Cu-doped CeO2 catalysts with different pore diameters were successfully prepared. When KIT-6-50 (hydrothermal synthesis of mesoporous silica KIT-6 temperature was 50 °C) and KIT-6-100 (hydrothermal synthesis of mesoporous silica KIT-6 temperature was 100 °C) were employed as the hard template, the uncoupled sub-framework Cu-doped CeO2 catalyst formed. When KIT-6-130 (hydrothermal synthesis of mesoporous silica KIT-6 temperature was 130 °C) was employed as the hard template, the coupled sub-framework Cu-doped CeO2 catalyst formed. Compared with the coupled sub-framework Cu-doped CeO2 catalyst, the uncoupled sub-framework Cu-doped CeO2 catalyst has the higher surface areas and more open system. The Cu-doped CeO2 catalyst with KIT-6-50 as a template exhibited the highest catalytic activity, and complete conversion temperature (T100) was about 53 °C for CO oxidation. Besides, it was investigated that there were more chemisorbed oxygen and oxygen vacancy on the surface of Cu-doped CeO2 with KIT-6-50 as a template catalyst by XPS analysis. It could be concluded that the higher surface area and more open system was relatively conducive to the catalytic oxidation of CO. At the same time, the chemisorbed oxygen and oxygen vacancy also played an important role in CO catalytic oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Gómez-Cortés A, Díaz G, Zanella R, Ramirez H, Santiago P, Saniger JM (2009) J Phys Chem C 113:9710–9720

    Article  Google Scholar 

  2. Carlsson PA, Skoglundh M (2011) Appl Catal B 101:669–675

    Article  CAS  Google Scholar 

  3. Wen L, Fu JK, Gu PY, Yao BX, Lin ZH, Zhou JZ (2008) Appl Catal B 79:402–409

    Article  CAS  Google Scholar 

  4. Han WL, Zhang P, Pan X, Tang ZC, Lu GX (2013) J Hazard Mater 263:299–306

    Article  CAS  Google Scholar 

  5. He C, Li JJ, Li P, Cheng J, Hao ZP, Xu ZP (2010) Appl Catal B 96:466–475

    Article  CAS  Google Scholar 

  6. Saqer SM, Kondarides DI, Verykios XE (2011) Appl Catal B 103:275–286

    Article  CAS  Google Scholar 

  7. Zhang SM, Huang WP, Qiu XH, Li BQ, Zheng XC, Wu SH (2002) Catal Lett 80:41–46

    Article  CAS  Google Scholar 

  8. Ho KY, Yeung KL (2006) J Catal 242:131–141

    Article  CAS  Google Scholar 

  9. Zhang DS, Pan CS, Shi LY, Huang L, Fang JH, Fu HX (2009) Micropor Mesopor Mater 117:193–200

    Article  CAS  Google Scholar 

  10. Pan CS, Zhang DS, Shi LY, Fang JH (2008) Eur J Inorg Chem 15:2429–2436

    Article  Google Scholar 

  11. Hasegawa Y, Fukumoto K, Ishima T, Yamamoto H, Sano M, Miyake T (2009) Appl Catal B 89:420–424

    Article  CAS  Google Scholar 

  12. Ma C, Wang D, Xue W, Dou B, Wang H, Hao Z (2011) Environ Sci Technol 45:3628–3634

    Article  CAS  Google Scholar 

  13. Wong K, Zeng QH, Yu AB (2011) Chem Eng J 174:408–412

    Article  CAS  Google Scholar 

  14. Qu ZP, Yu FL, Zhang XD, Wang Y, Gao JS (2013) Chem Eng J 229:522–532

    Article  CAS  Google Scholar 

  15. Su YF, Tang ZC, Song Y, Han WL, Zhang P (2014) CrystEngComm 16:5189–5197

    Article  CAS  Google Scholar 

  16. Teng ML, Luo LT, Yang XM (2009) Micropor Mesopor Mater 119:158–164

    Article  CAS  Google Scholar 

  17. Rumplecker A, Kleitz F, Salabas EL, Schüth F (2007) Chem Mater 19:485–496

    Article  CAS  Google Scholar 

  18. Kleitz F, Choi SH, Ryoo R (2003) Chem Commun 17:2136–2137

    Article  Google Scholar 

  19. Yue WB, Zhou WZ (2007) Chem Mater 19:2359–2363

    Article  CAS  Google Scholar 

  20. Kim TW, Kleitz F, Paul B, Ryoo R (2005) J Am Chem Soc 127:7601–7610

    Article  CAS  Google Scholar 

  21. Jiao F, Hill AH, Harrison A, Berko A, Chadwick AV, Bruce PG (2008) J Am Chem Soc 130:5262–5266

    Article  CAS  Google Scholar 

  22. Pu ZY, Liu XS, Jia AP, Xie YL, Lu JQ (2008) M.F. Luo. J Phys Chem C 112:15045–15051

    Article  CAS  Google Scholar 

  23. Tüysüz H, Comotti M, Schüth F (2008) Chem Commun 34:4022–4024

    Article  Google Scholar 

  24. Díaz G, Pérez-Hernández R, Gómez-Cortés A, Benaissa M, Mariscal R, Fierro JLG (1999) J Catal 187:1–14

    Article  Google Scholar 

  25. Deraz NM (2009) Appl Surf Sci 255:3884–3890

    Article  CAS  Google Scholar 

  26. Zou ZQ, Meng M, Zha YQ (2010) J Phys Chem C 114:468–477

    Article  CAS  Google Scholar 

  27. He C, Yu Y, Yue L, Qiao N, Li JJ, Shen Q, Yu WJ, Chen JS, Hao ZP (2014) Appl Catal B 147:156–166

    Article  CAS  Google Scholar 

  28. Gómez-Cortés A, Marquez Y, Arenas-Alatorre J, Díaz G (2008) Catal Today 133–135:743–749

    Article  Google Scholar 

  29. Xia Y, Dai H, Jiang H, Zhang L (2010) Catal Commun 11:1171–1175

    Article  CAS  Google Scholar 

  30. Henderson MA, Perkins CL, Engelhard MH, Thevuthasan S, Peden CHF (2003) Surf Sci 526:1–18

    Article  CAS  Google Scholar 

  31. Zhu J, Yang J, Bian ZF, Ren J, Liu YM, Cao Y, Liu HX, He HY, Fan KN (2007) Appl Catal B 76:82–91

    Article  CAS  Google Scholar 

  32. Avgouropoulos G, Ioannides T (2003) Appl Catal A 244:155–167

    Article  CAS  Google Scholar 

  33. Garca MF, Arias AM, Salamanca LN, Coronado JM, Anderson JA (1999) J Catal 187:474–485

    Article  Google Scholar 

  34. Deng JG, Zhang L, Dai HX, He H, Au CT (2008) Catal Lett 123:294–300

    Article  CAS  Google Scholar 

  35. Kurkina ES, Tolstunova ED (2001) Appl Surf Sci 182:77–90

    Article  CAS  Google Scholar 

  36. Bekyarova E, Fornasiero P, Kaspar J, Graziani M (1998) Catal Today 45:179–183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of The National Natural Science Foundation of China (21407154), The National Basic Research Program of China (2013CB933201), Science and Technology Program of Lanzhou City (2014-2-5), West Light Foundation of The Chinese Academy of Sciences is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Tang, Z., Han, W. et al. Effect of Different Pore Structures on the Surface Textures of the Cu-Doped CeO2 Catalysts and Applied for CO Catalytic Oxidation. Catal Surv Asia 19, 129–139 (2015). https://doi.org/10.1007/s10563-015-9190-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-015-9190-6

Keywords

Navigation