Catalysis Surveys from Asia

, Volume 19, Issue 1, pp 1–16 | Cite as

Catalysis Removal of Indoor Volatile Organic Compounds in Room Temperature: From Photocatalysis to Active Species Assistance Catalysis

  • Zhi Jiang
  • MingXia Chen
  • Jianwei Shi
  • Jian Yuan
  • Wenfeng Shangguan


Volatile organic compounds (VOCs), common chemical contaminants found in office and home environments, are one of the main causes of sick building syndrome. To efficiently remove the VOCs in terms of energy efficiency, product selectivity, safety and durability is the main target for current indoor VOCs control study toward the aim for future commercial application. The main challenge to achieve this goal is represented by removal specific VOCs with low concentration under room temperature. In a chemical kinetics sense, this means overcoming the activation barriers to achieve considerable reaction rate for reactants with low concentration without the aid of increasing temperature. Assistance the VOCs catalysis degradation reaction with oxidizing species or pre-degradation the reactants to easier treated substances could also help to increase the reaction rate by providing an alternative route for the reaction with lower activation energy. This technique route thus holds great promise to achieve commercial application for indoor VOCs degradation study. Therefore, we provide here an overview of the efforts that have been developed already on combing traditional photocatalysis and catalysis technology with techniques capable of producing highly active species to remove indoor VOCs. The assistance techniques include, but not limited to technologies, such as vacuum ultraviolet, ozone, plasma. Special emphasis is placed on rational catalyst designing to meet the challenge of indoor VOCs removal in the kinetic sense. Last but not least, we also identified future opportunities for indoor air quality control including: (a) combining high-voltage electrostatics in the system using post catalyst bed configuration to solve the issues of VOCs abatement and particulate matter capture in one basket. (b) To obtain a more complete understanding of the mechanism underlying the combination effects, which is crucial to get a better catalyst designing.


Indoor Air clean Room temperature Photocatalysis Catalytic assistance Active species 



The financial support from: the National High Technology Research and Development Program of China (2007AA061405, 2010AA064907), NSFC (Grant No. 50906050), Shanghai Natural Science Foundation (14ZR1421900) is gratefully acknowledged.


  1. 1.
    World Health Organization (1989) In: Indoor air quality: organic pollutants. WHO, GenevaGoogle Scholar
  2. 2.
    United States Environmental Protection Agency (1995) Characterizing air emissions from indoor sources. Washington, DCGoogle Scholar
  3. 3.
    Watson JG, Chow JC, Fujita EM (2001) Review of volatile organic compound source apportionment by chemical mass balance. Atmos Environ 35(9):1567–1584CrossRefGoogle Scholar
  4. 4.
    Burn J, Henk J, Bloemen T (1993) In: Chemistry and analysis of volatile organic compounds in the environment. Springer, BerlinGoogle Scholar
  5. 5.
    Wang S, Ang HM, Tade MO (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33(5):694–705CrossRefGoogle Scholar
  6. 6.
    Kim K-J et al (2006) Adsorption–desorption characteristics of VOCs over impregnated activated carbons. Catal Today 111(3–4):223–228CrossRefGoogle Scholar
  7. 7.
    Foster K et al (1992) Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers. Chem Mater 4(5):1068–1073CrossRefGoogle Scholar
  8. 8.
    Kosuge K et al (2007) Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance. Langmuir 23(6):3095–3102CrossRefGoogle Scholar
  9. 9.
    Fuertes A, Marban G, Nevskaia D (2003) Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths. Carbon 41(1):87–96CrossRefGoogle Scholar
  10. 10.
    Lillo-Ródenas M, Cazorla-Amorós D, Linares-Solano A (2005) Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon 43(8):1758–1767CrossRefGoogle Scholar
  11. 11.
    Chiang Y-C, Chiang P-C, Huang C-P (2001) Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 39(4):523–534CrossRefGoogle Scholar
  12. 12.
    Kim K-J, Ahn H-G (2012) The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous Mesoporous Mater 152:78–83CrossRefGoogle Scholar
  13. 13.
    Khan FI, Kr A (2000) Ghoshal, Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13(6):527–545CrossRefGoogle Scholar
  14. 14.
    Marks J, Rhoads T (1991) Planning saves time and money, when installing VOC controls. Chem Process 5:42Google Scholar
  15. 15.
    Khan FI, Kr Ghoshal A (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13(6):527–545CrossRefGoogle Scholar
  16. 16.
    Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  17. 17.
    Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol, A 108(1):1–35CrossRefGoogle Scholar
  18. 18.
    Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177CrossRefGoogle Scholar
  19. 19.
    Ohtani B (2008) Preparing articles on photocatalysis-beyond the illusions, misconceptions, and speculation. Chem Lett 37(3):216–229CrossRefGoogle Scholar
  20. 20.
    Alberici RM, Jardim WF (1997) Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl Catal B 14(1):55–68CrossRefGoogle Scholar
  21. 21.
    Zhao J, Yang X (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Environ 38(5):645–654CrossRefGoogle Scholar
  22. 22.
    Mo J et al (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43(14):2229–2246CrossRefGoogle Scholar
  23. 23.
    Obee TN (1996) Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor. Environ Sci Technol 30(12):3578–3584CrossRefGoogle Scholar
  24. 24.
    Noguchi T et al (1998) Photocatalytic degradation of gaseous formaldehyde using TiO2 film. Environ Sci Technol 32(23):3831–3833CrossRefGoogle Scholar
  25. 25.
    Boulamanti AK, Philippopoulos CJ (2008) Photocatalytic degradation of methyl tert-butyl ether in the gas-phase: a kinetic study. J Hazard Mater 160(1):83–87CrossRefGoogle Scholar
  26. 26.
    Debono O et al (2013) Gas phase photocatalytic oxidation of decane at ppb levels: removal kinetics, reaction intermediates and carbon mass balance. J Photochem Photobiol A 258:17–29CrossRefGoogle Scholar
  27. 27.
    Hung C-H, Mariñas BJ (1997) Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films. Environ Sci Technol 31(5):1440–1445CrossRefGoogle Scholar
  28. 28.
    Jacoby WA (1993) Destruction of trichloroethylene in air via semiconductor mediated gas-solid heterogeneous photocatalysis. University Microfilms Int./UMIGoogle Scholar
  29. 29.
    Peral J, Ollis DF (1997) TiO2 photocatalyst deactivation by gas-phase oxidation of heteroatom organics. J Mol Catal A 115(2):347–354CrossRefGoogle Scholar
  30. 30.
    Méndez-Román R, Cardona-Martínez N (1998) Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene. Catal Today 40(4):353–365CrossRefGoogle Scholar
  31. 31.
    Cao L et al (2000) Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: studies of deactivation and regeneration. J Catal 196(2):253–261CrossRefGoogle Scholar
  32. 32.
    Zhang P, Liu J, Zhang Z (2004) VUV photocatalytic degradation of toluene in the gas phase. Chem Lett 33(10):1242–1243CrossRefGoogle Scholar
  33. 33.
    Jeong J, Sekiguchi K, Sakamoto K (2004) Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO2 catalyst: comparison of three UV sources. Chemosphere 57(7):663–671CrossRefGoogle Scholar
  34. 34.
    Jeong J et al (2005) Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp: decomposition characteristics, identification of by-products and water-soluble organic intermediates. J Photochem Photobiol A 169(3):279–287CrossRefGoogle Scholar
  35. 35.
    Yang L et al (2007) Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes. Sep Purif Technol 54(2):204–211CrossRefGoogle Scholar
  36. 36.
    Pengyi Z et al (2003) A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV. J Photochem Photobiol A 156(1):189–194CrossRefGoogle Scholar
  37. 37.
    Castle GSP, Inculet II, Burgess KI (1969) In: IEEE Transactions on ozone generation in positive corona electrostatic precipitators. Industry and General Applications IGA-5(4):489–496Google Scholar
  38. 38.
    Wu JJ et al (2008) The oxidation study of 2-propanol using ozone-based advanced oxidation processes. Sep Purif Technol 62(1):39–46CrossRefGoogle Scholar
  39. 39.
    Pengyi Z et al (2003) A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV. J Photochem Photobiol, A 156(1–3):189–194CrossRefGoogle Scholar
  40. 40.
    Kopf P, Gilbert E, Eberle SH (2000) TiO2 photocatalytic oxidation of monochloroacetic acid and pyridine: influence of ozone. J Photochem Photobiol A 136(3):163–168CrossRefGoogle Scholar
  41. 41.
    Cornish BJPA, Lawton LA, Robertson PKJ (2000) Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-lR using titanium dioxide. Appl Catal B 25(1):59–67CrossRefGoogle Scholar
  42. 42.
    Garoma T, Gurol MD (2004) Degradation of tert-butyl alcohol in dilute aqueous solution by an O3/UV process. Environ Sci Technol 38(19):5246–5252CrossRefGoogle Scholar
  43. 43.
    Irmak S, Erbatur O, Akgerman A (2005) Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques. J Hazard Mater 126(1–3):54–62CrossRefGoogle Scholar
  44. 44.
    Kresge C et al (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712CrossRefGoogle Scholar
  45. 45.
    Chen C-Y, Li H-X, Davis ME (1993) Studies on mesoporous materials: i. Synthesis and characterization of MCM-41. Microporous Mater 2(1):17–26CrossRefGoogle Scholar
  46. 46.
    Oda T, Yamaji K (2003) Dilute Trichloroethylene decomposition in air by using non-thermal plasma: catalyst effect. J Adv Oxid Technol 6(1):93–99Google Scholar
  47. 47.
    Huang X et al (2011) Synergetic catalytic performance of TiO2/MCM-41 for ozone-assisted photocatalytic degradation of gaseous acetaldehyde. Environ Technol 32(3):307–316CrossRefGoogle Scholar
  48. 48.
    Huang X et al (2009) Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts. J Hazard Mater 171(1):827–832CrossRefGoogle Scholar
  49. 49.
    Yuan J et al (2013) Ozone-assisted photocatalytic degradation of gaseous acetaldehyde on TiO2/M-ZSM-5 (M = Zn, Cu, Mn). Catal Today 201:182–188CrossRefGoogle Scholar
  50. 50.
    Giaya A, Thompson RW, Denkewicz R Jr (2000) Liquid and vapor phase adsorption of chlorinated volatile organic compounds on hydrophobic molecular sieves. Microporous Mesoporous Mater 40(1–3):205–218CrossRefGoogle Scholar
  51. 51.
    Takeuchi M et al (2007) Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: effect of hydrophobicity of zeolites. J Catal 246(2):235–240CrossRefGoogle Scholar
  52. 52.
    Chao CYH, Kwong CW, Hui KS (2007) Potential use of a combined ozone and zeolite system for gaseous toluene elimination. J Hazard Mater 143(1–2):118–127CrossRefGoogle Scholar
  53. 53.
    Huang X et al (2009) Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts. J Hazard Mater 171(1–3):827–832CrossRefGoogle Scholar
  54. 54.
    Yuan J et al (2013) Ozone-assisted photocatalytic degradation of gaseous acetaldehyde on TiO2/M-ZSM-5 (M = Zn, Cu, Mn). Catal Today 201:182–188CrossRefGoogle Scholar
  55. 55.
    Anpo M (1994) et al., Preparation and characterization of the Cu+/ZSM-5 catalyst and its reaction with NO under UV irradiation at 275 K. In situ photoluminescence, EPR, and FT-IR investigations. J Phys Chem 98(22):5744–5750CrossRefGoogle Scholar
  56. 56.
    Ebitani K, Hirano Y, Morikawa A (1995) Rare earth ions as heterogeneous photocatalysts for the decomposition of dinitrogen monoxide (N2O). J Catal 157(1):262–265CrossRefGoogle Scholar
  57. 57.
    Higashimoto S et al (2000) Characterization of Fe-oxide species prepared onto ZSM-5 zeolites and their role in the photocatalytic decomposition of N2O into N2 and O2. Chem Lett 29(10):1160–1161CrossRefGoogle Scholar
  58. 58.
    Pontiga F et al (2002) A study of ozone generation by negative corona discharge through different plasma chemistry models. Ozone Sci Eng 24(6):447–462CrossRefGoogle Scholar
  59. 59.
    Boelter KJ, Davidson JH (1997) Ozone generation by indoor, lectrostatic air cleaners. Aerosol Sci Technol 27(6):689–708CrossRefGoogle Scholar
  60. 60.
    Neyts EC, Bogaerts A (2014) Understanding plasma catalysis through modelling and simulation—a review. J Phys D 47(22):224010CrossRefGoogle Scholar
  61. 61.
    Thevenet F et al (2014) Plasma–catalyst coupling for volatile organic compound removal and indoor air treatment: a review. J Phys D 47(22):224011CrossRefGoogle Scholar
  62. 62.
    Chen HL et al (2008) Review of plasma catalysis on hydrocarbon reforming for hydrogen production—Interaction, integration, and prospects. Appl Catal B 85(1–2):1–9Google Scholar
  63. 63.
    Chen HL et al (2009) Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol 43(7):2216–2227CrossRefGoogle Scholar
  64. 64.
    Kim HH et al (2001) Low-temperature NOx reduction processes using combined systems of pulsed corona discharge and catalysts. J Phys D 34(4):604CrossRefGoogle Scholar
  65. 65.
    Chen Z, Mathur VK (2002) Nonthermal plasma for gaseous pollution control. Ind Eng Chem Res 41(9):2082–2089CrossRefGoogle Scholar
  66. 66.
    Matteson MJ, Stringer HL, Busbee WL (1972) Corona discharge oxidation of sulfur dioxide. Environ Sci Technol 6(10):895–901CrossRefGoogle Scholar
  67. 67.
    Penetrante BM et al (1996) Pulsed corona and dielectric-barrier discharge processing of NO in N2. Appl Phys Lett 68(26):3719–3721CrossRefGoogle Scholar
  68. 68.
    Orlandini I, Riedel U (2004) Oxidation of propene and the formation of methyl nitrate in non-thermal plasma discharges. Catal Today 89(1–2):83–88CrossRefGoogle Scholar
  69. 69.
    Urashima K et al. (2000) Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. IEEE Trans Dielectr Electr Insul 7(5):602–614Google Scholar
  70. 70.
    Subrahmanyam C, Renken A, Kiwi-Minsker L (2007) Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chem Eng J 134(1–3):78–83CrossRefGoogle Scholar
  71. 71.
    Holzer F, Roland U, Kopinke F-D (2002) Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 1. Accessibility of the intra-particle volume. Appl Catal B 38(3):163–181CrossRefGoogle Scholar
  72. 72.
    Kim H-H, Ogata A, Futamura S (2006) Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis. IEEE Trans Plasma Sci 34(3):984–995CrossRefGoogle Scholar
  73. 73.
    Van Durme J et al (2007) Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Appl Catal B 74(1–2):161–169CrossRefGoogle Scholar
  74. 74.
    Woo Seok K (2003) et al. Numerical study on influences of barrier arrangements on dielectric barrier discharge characteristics. Plasma Science, IEEE Transactions on 31(4):504–510Google Scholar
  75. 75.
    Chang J et al (2000) Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems. IEEE Trans Ind Appl 36(5):1251–1259CrossRefGoogle Scholar
  76. 76.
    Takuma T (1991) Field behaviour at a triple junction in composite dielectric arrangements. IEEE Trans Electr Insul 26(3):500–509CrossRefGoogle Scholar
  77. 77.
    Ogata A et al (1999) Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure. Plasma Chem Plasma Process 19(3):383–394CrossRefGoogle Scholar
  78. 78.
    Holzer F, Kopinke FD, Roland U (2005) Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chem Plasma Process 25(6):595–611CrossRefGoogle Scholar
  79. 79.
    Malik MA, Minamitani Y, Schoenbach KH (2005) Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor. IEEE Trans Plasma Sci 33(1):50–56CrossRefGoogle Scholar
  80. 80.
    Xin T et al (2011) Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor. J Phys D 44(27):274007CrossRefGoogle Scholar
  81. 81.
    Guo Y-F et al (2006) Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. J Mol Catal A 245(1–2):93–100CrossRefGoogle Scholar
  82. 82.
    Pylinina AI, Mikhalenko II (2013) Activation of Cu-, Ag-, Au/ZrO2 catalysts for dehydrogenation of alcohols by low-temperature oxygen and hydrogen plasma. Theoret Exp Chem 49(1):65–69CrossRefGoogle Scholar
  83. 83.
    Demidyuk V, Whitehead JC (2007) Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system. Plasma Chem Plasma Process 27(1):85–94CrossRefGoogle Scholar
  84. 84.
    Roland U, Holzer F, Kopinke FD (2002) Improved oxidation of air pollutants in a non-thermal plasma. Catal Today 73(3–4):315–323CrossRefGoogle Scholar
  85. 85.
    Cheng D-G, Zhu X (2007) Reduction of Pd/HZSM-5 using oxygen glow discharge plasma for a highly durable catalyst preparation. Catal Lett. 118(3–4):260–263CrossRefGoogle Scholar
  86. 86.
    Zou J-J, Zhang Y-P, Liu C-J (2006) Reduction of supported noble-metal ions using glow discharge plasma. Langmuir 22(26):11388–11394CrossRefGoogle Scholar
  87. 87.
    Liu C-J et al (2006) Plasma application for more environmentally friendly catalyst preparation. Pure Appl Chem. 78(6):1227–1238Google Scholar
  88. 88.
    Essakhi A et al (2011) Coating of structured catalytic reactors by plasma assisted polymerization of tetramethyldisiloxane. Polym Eng Sci 51(5):940–947CrossRefGoogle Scholar
  89. 89.
    Löfberg A et al (2011) Use of catalytic oxidation and dehydrogenation of hydrocarbons reactions to highlight improvement of heat transfer in catalytic metallic foams. Chem Eng J 176–177:49–56CrossRefGoogle Scholar
  90. 90.
    de Deugd R, Kapteijn F, Moulijn J (2003) Trends in Fischer–Tropsch reactor technology—opportunities for structured reactors. Top Catal 26(1–4):29–39CrossRefGoogle Scholar
  91. 91.
    Blin-Simiand N et al (2009) Removal of formaldehyde in nitrogen and in dry air by a DBD: importance of temperature and role of nitrogen metastable states. J Phys D 42(12):122003CrossRefGoogle Scholar
  92. 92.
    Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103(5):1685–1758CrossRefGoogle Scholar
  93. 93.
    Ruzzi M et al (2013) Time-resolved EPR study of singlet oxygen in the gas phase. J Phys Chem A 117(25):5232–5240CrossRefGoogle Scholar
  94. 94.
    Einaga H, Ibusuki T, Futamura S (2001) Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition. IEEE Trans Ind Appl 37(5):1476–1482CrossRefGoogle Scholar
  95. 95.
    Delagrange S, Pinard L, Tatibouët J-M (2006) Combination of a non-thermal plasma and a catalyst for toluene removal from air: manganese based oxide catalysts. Appl Catal B 68(3–4):92–98CrossRefGoogle Scholar
  96. 96.
    Grossmannova H, Neirynck D, Leys C (2006) Atmospheric discharge combined with Cu-Mn/Al2O3 catalyst unit for the removal of toluene. Czech J Phys 56(2):B1156–B1161CrossRefGoogle Scholar
  97. 97.
    Intriago L et al (2006) Combustion of trichloroethylene and dichloromethane over protonic zeolites: influence of adsorption properties on the catalytic performance. Microporous Mesoporous Mater 91(1–3):161–169CrossRefGoogle Scholar
  98. 98.
    Lu B et al (2006) Catalytic oxidation of benzene using DBD corona discharges. J Hazard Mater 137(1):633–637CrossRefGoogle Scholar
  99. 99.
    Han SB, Oda T (2007) Decomposition mechanism of trichloroethylene based on by-product distribution in the hybrid barrier discharge plasma process. Plasma Sources Sci Technol 16(2):413–421CrossRefGoogle Scholar
  100. 100.
    Delagrange S, Pinard L, Tatibouët JM (2006) Combination of a non-thermal plasma and a catalyst for toluene removal from air: manganese based oxide catalysts. Appl Catal B 68(3–4):92–98CrossRefGoogle Scholar
  101. 101.
    Demidiouk V, Moon SI, Chae JO (2003) Toluene and butyl acetate removal from air by plasma-catalytic system. Catal Commun 4(2):51–56CrossRefGoogle Scholar
  102. 102.
    Demidiouk V, Chae JO (2005) Decomposition of volatile organic compounds in plasma-catalytic system. IEEE Trans Plasma Sci 33(1):157–161CrossRefGoogle Scholar
  103. 103.
    Demidiouk V, Jae-Ou C (2005) Decomposition of volatile organic compounds in plasma-catalytic system. IEEE Trans Plasma Sci 33(1):157–161CrossRefGoogle Scholar
  104. 104.
    Magureanu M et al (2007) Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts. Appl Catal B 76(3–4):275–281CrossRefGoogle Scholar
  105. 105.
    Dhandapani B, Oyama ST (1997) Gas phase ozone decomposition catalysts. Appl Catal B 11(2):129–166CrossRefGoogle Scholar
  106. 106.
    Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112(11):4406–4417CrossRefGoogle Scholar
  107. 107.
    Li Y et al (2014) Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts. Chem Eng J 241:251–258CrossRefGoogle Scholar
  108. 108.
    Liang S et al (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112(14):5307–5315CrossRefGoogle Scholar
  109. 109.
    Bo Z et al (2009) Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds. J Hazard Mater 166(2):1210–1216CrossRefGoogle Scholar
  110. 110.
    Li Y et al (2014) Removal of volatile organic compounds (VOCs) at room temperature using dielectric barrier discharge and plasma-catalysis. Plasma Chem Plasma Process 34(4):801–810CrossRefGoogle Scholar
  111. 111.
    Zhou J-W et al (2014) Catalytic oxidation of low concentration formaldehyde with the assist of ozone over supported cobalt-manganese composite oxides. J Mol Catal 28(1):60–66Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhi Jiang
    • 1
    • 2
  • MingXia Chen
    • 1
    • 2
  • Jianwei Shi
    • 1
    • 2
  • Jian Yuan
    • 1
    • 2
  • Wenfeng Shangguan
    • 1
    • 2
  1. 1.Research Center for Combustion and Environment TechnologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Key Laboratory for Power Machinery and Engineering of Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations