Skip to main content

Advertisement

Log in

Catalysis Removal of Indoor Volatile Organic Compounds in Room Temperature: From Photocatalysis to Active Species Assistance Catalysis

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs), common chemical contaminants found in office and home environments, are one of the main causes of sick building syndrome. To efficiently remove the VOCs in terms of energy efficiency, product selectivity, safety and durability is the main target for current indoor VOCs control study toward the aim for future commercial application. The main challenge to achieve this goal is represented by removal specific VOCs with low concentration under room temperature. In a chemical kinetics sense, this means overcoming the activation barriers to achieve considerable reaction rate for reactants with low concentration without the aid of increasing temperature. Assistance the VOCs catalysis degradation reaction with oxidizing species or pre-degradation the reactants to easier treated substances could also help to increase the reaction rate by providing an alternative route for the reaction with lower activation energy. This technique route thus holds great promise to achieve commercial application for indoor VOCs degradation study. Therefore, we provide here an overview of the efforts that have been developed already on combing traditional photocatalysis and catalysis technology with techniques capable of producing highly active species to remove indoor VOCs. The assistance techniques include, but not limited to technologies, such as vacuum ultraviolet, ozone, plasma. Special emphasis is placed on rational catalyst designing to meet the challenge of indoor VOCs removal in the kinetic sense. Last but not least, we also identified future opportunities for indoor air quality control including: (a) combining high-voltage electrostatics in the system using post catalyst bed configuration to solve the issues of VOCs abatement and particulate matter capture in one basket. (b) To obtain a more complete understanding of the mechanism underlying the combination effects, which is crucial to get a better catalyst designing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. World Health Organization (1989) In: Indoor air quality: organic pollutants. WHO, Geneva

  2. United States Environmental Protection Agency (1995) Characterizing air emissions from indoor sources. Washington, DC

  3. Watson JG, Chow JC, Fujita EM (2001) Review of volatile organic compound source apportionment by chemical mass balance. Atmos Environ 35(9):1567–1584

    Article  CAS  Google Scholar 

  4. Burn J, Henk J, Bloemen T (1993) In: Chemistry and analysis of volatile organic compounds in the environment. Springer, Berlin

  5. Wang S, Ang HM, Tade MO (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33(5):694–705

    Article  CAS  Google Scholar 

  6. Kim K-J et al (2006) Adsorption–desorption characteristics of VOCs over impregnated activated carbons. Catal Today 111(3–4):223–228

    Article  CAS  Google Scholar 

  7. Foster K et al (1992) Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers. Chem Mater 4(5):1068–1073

    Article  CAS  Google Scholar 

  8. Kosuge K et al (2007) Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance. Langmuir 23(6):3095–3102

    Article  CAS  Google Scholar 

  9. Fuertes A, Marban G, Nevskaia D (2003) Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths. Carbon 41(1):87–96

    Article  CAS  Google Scholar 

  10. Lillo-Ródenas M, Cazorla-Amorós D, Linares-Solano A (2005) Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon 43(8):1758–1767

    Article  CAS  Google Scholar 

  11. Chiang Y-C, Chiang P-C, Huang C-P (2001) Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 39(4):523–534

    Article  CAS  Google Scholar 

  12. Kim K-J, Ahn H-G (2012) The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous Mesoporous Mater 152:78–83

    Article  CAS  Google Scholar 

  13. Khan FI, Kr A (2000) Ghoshal, Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13(6):527–545

    Article  Google Scholar 

  14. Marks J, Rhoads T (1991) Planning saves time and money, when installing VOC controls. Chem Process 5:42

    Google Scholar 

  15. Khan FI, Kr Ghoshal A (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13(6):527–545

    Article  Google Scholar 

  16. Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  17. Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol, A 108(1):1–35

    Article  CAS  Google Scholar 

  18. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177

    Article  CAS  Google Scholar 

  19. Ohtani B (2008) Preparing articles on photocatalysis-beyond the illusions, misconceptions, and speculation. Chem Lett 37(3):216–229

    Article  CAS  Google Scholar 

  20. Alberici RM, Jardim WF (1997) Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl Catal B 14(1):55–68

    Article  CAS  Google Scholar 

  21. Zhao J, Yang X (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Environ 38(5):645–654

    Article  Google Scholar 

  22. Mo J et al (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43(14):2229–2246

    Article  CAS  Google Scholar 

  23. Obee TN (1996) Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor. Environ Sci Technol 30(12):3578–3584

    Article  CAS  Google Scholar 

  24. Noguchi T et al (1998) Photocatalytic degradation of gaseous formaldehyde using TiO2 film. Environ Sci Technol 32(23):3831–3833

    Article  CAS  Google Scholar 

  25. Boulamanti AK, Philippopoulos CJ (2008) Photocatalytic degradation of methyl tert-butyl ether in the gas-phase: a kinetic study. J Hazard Mater 160(1):83–87

    Article  CAS  Google Scholar 

  26. Debono O et al (2013) Gas phase photocatalytic oxidation of decane at ppb levels: removal kinetics, reaction intermediates and carbon mass balance. J Photochem Photobiol A 258:17–29

    Article  CAS  Google Scholar 

  27. Hung C-H, Mariñas BJ (1997) Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films. Environ Sci Technol 31(5):1440–1445

    Article  CAS  Google Scholar 

  28. Jacoby WA (1993) Destruction of trichloroethylene in air via semiconductor mediated gas-solid heterogeneous photocatalysis. University Microfilms Int./UMI

  29. Peral J, Ollis DF (1997) TiO2 photocatalyst deactivation by gas-phase oxidation of heteroatom organics. J Mol Catal A 115(2):347–354

    Article  CAS  Google Scholar 

  30. Méndez-Román R, Cardona-Martínez N (1998) Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene. Catal Today 40(4):353–365

    Article  Google Scholar 

  31. Cao L et al (2000) Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: studies of deactivation and regeneration. J Catal 196(2):253–261

    Article  CAS  Google Scholar 

  32. Zhang P, Liu J, Zhang Z (2004) VUV photocatalytic degradation of toluene in the gas phase. Chem Lett 33(10):1242–1243

    Article  CAS  Google Scholar 

  33. Jeong J, Sekiguchi K, Sakamoto K (2004) Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO2 catalyst: comparison of three UV sources. Chemosphere 57(7):663–671

    Article  CAS  Google Scholar 

  34. Jeong J et al (2005) Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp: decomposition characteristics, identification of by-products and water-soluble organic intermediates. J Photochem Photobiol A 169(3):279–287

    Article  CAS  Google Scholar 

  35. Yang L et al (2007) Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes. Sep Purif Technol 54(2):204–211

    Article  CAS  Google Scholar 

  36. Pengyi Z et al (2003) A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV. J Photochem Photobiol A 156(1):189–194

    Article  CAS  Google Scholar 

  37. Castle GSP, Inculet II, Burgess KI (1969) In: IEEE Transactions on ozone generation in positive corona electrostatic precipitators. Industry and General Applications IGA-5(4):489–496

  38. Wu JJ et al (2008) The oxidation study of 2-propanol using ozone-based advanced oxidation processes. Sep Purif Technol 62(1):39–46

    Article  CAS  Google Scholar 

  39. Pengyi Z et al (2003) A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV. J Photochem Photobiol, A 156(1–3):189–194

    Article  CAS  Google Scholar 

  40. Kopf P, Gilbert E, Eberle SH (2000) TiO2 photocatalytic oxidation of monochloroacetic acid and pyridine: influence of ozone. J Photochem Photobiol A 136(3):163–168

    Article  CAS  Google Scholar 

  41. Cornish BJPA, Lawton LA, Robertson PKJ (2000) Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-lR using titanium dioxide. Appl Catal B 25(1):59–67

    Article  CAS  Google Scholar 

  42. Garoma T, Gurol MD (2004) Degradation of tert-butyl alcohol in dilute aqueous solution by an O3/UV process. Environ Sci Technol 38(19):5246–5252

    Article  CAS  Google Scholar 

  43. Irmak S, Erbatur O, Akgerman A (2005) Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques. J Hazard Mater 126(1–3):54–62

    Article  CAS  Google Scholar 

  44. Kresge C et al (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    Article  CAS  Google Scholar 

  45. Chen C-Y, Li H-X, Davis ME (1993) Studies on mesoporous materials: i. Synthesis and characterization of MCM-41. Microporous Mater 2(1):17–26

    Article  Google Scholar 

  46. Oda T, Yamaji K (2003) Dilute Trichloroethylene decomposition in air by using non-thermal plasma: catalyst effect. J Adv Oxid Technol 6(1):93–99

    CAS  Google Scholar 

  47. Huang X et al (2011) Synergetic catalytic performance of TiO2/MCM-41 for ozone-assisted photocatalytic degradation of gaseous acetaldehyde. Environ Technol 32(3):307–316

    Article  CAS  Google Scholar 

  48. Huang X et al (2009) Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts. J Hazard Mater 171(1):827–832

    Article  CAS  Google Scholar 

  49. Yuan J et al (2013) Ozone-assisted photocatalytic degradation of gaseous acetaldehyde on TiO2/M-ZSM-5 (M = Zn, Cu, Mn). Catal Today 201:182–188

    Article  CAS  Google Scholar 

  50. Giaya A, Thompson RW, Denkewicz R Jr (2000) Liquid and vapor phase adsorption of chlorinated volatile organic compounds on hydrophobic molecular sieves. Microporous Mesoporous Mater 40(1–3):205–218

    Article  CAS  Google Scholar 

  51. Takeuchi M et al (2007) Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: effect of hydrophobicity of zeolites. J Catal 246(2):235–240

    Article  CAS  Google Scholar 

  52. Chao CYH, Kwong CW, Hui KS (2007) Potential use of a combined ozone and zeolite system for gaseous toluene elimination. J Hazard Mater 143(1–2):118–127

    Article  CAS  Google Scholar 

  53. Huang X et al (2009) Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts. J Hazard Mater 171(1–3):827–832

    Article  CAS  Google Scholar 

  54. Yuan J et al (2013) Ozone-assisted photocatalytic degradation of gaseous acetaldehyde on TiO2/M-ZSM-5 (M = Zn, Cu, Mn). Catal Today 201:182–188

    Article  CAS  Google Scholar 

  55. Anpo M (1994) et al., Preparation and characterization of the Cu+/ZSM-5 catalyst and its reaction with NO under UV irradiation at 275 K. In situ photoluminescence, EPR, and FT-IR investigations. J Phys Chem 98(22):5744–5750

    Article  CAS  Google Scholar 

  56. Ebitani K, Hirano Y, Morikawa A (1995) Rare earth ions as heterogeneous photocatalysts for the decomposition of dinitrogen monoxide (N2O). J Catal 157(1):262–265

    Article  CAS  Google Scholar 

  57. Higashimoto S et al (2000) Characterization of Fe-oxide species prepared onto ZSM-5 zeolites and their role in the photocatalytic decomposition of N2O into N2 and O2. Chem Lett 29(10):1160–1161

    Article  Google Scholar 

  58. Pontiga F et al (2002) A study of ozone generation by negative corona discharge through different plasma chemistry models. Ozone Sci Eng 24(6):447–462

    Article  CAS  Google Scholar 

  59. Boelter KJ, Davidson JH (1997) Ozone generation by indoor, lectrostatic air cleaners. Aerosol Sci Technol 27(6):689–708

    Article  CAS  Google Scholar 

  60. Neyts EC, Bogaerts A (2014) Understanding plasma catalysis through modelling and simulation—a review. J Phys D 47(22):224010

    Article  CAS  Google Scholar 

  61. Thevenet F et al (2014) Plasma–catalyst coupling for volatile organic compound removal and indoor air treatment: a review. J Phys D 47(22):224011

    Article  CAS  Google Scholar 

  62. Chen HL et al (2008) Review of plasma catalysis on hydrocarbon reforming for hydrogen production—Interaction, integration, and prospects. Appl Catal B 85(1–2):1–9

    CAS  Google Scholar 

  63. Chen HL et al (2009) Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol 43(7):2216–2227

    Article  CAS  Google Scholar 

  64. Kim HH et al (2001) Low-temperature NO x reduction processes using combined systems of pulsed corona discharge and catalysts. J Phys D 34(4):604

    Article  CAS  Google Scholar 

  65. Chen Z, Mathur VK (2002) Nonthermal plasma for gaseous pollution control. Ind Eng Chem Res 41(9):2082–2089

    Article  CAS  Google Scholar 

  66. Matteson MJ, Stringer HL, Busbee WL (1972) Corona discharge oxidation of sulfur dioxide. Environ Sci Technol 6(10):895–901

    Article  CAS  Google Scholar 

  67. Penetrante BM et al (1996) Pulsed corona and dielectric-barrier discharge processing of NO in N2. Appl Phys Lett 68(26):3719–3721

    Article  CAS  Google Scholar 

  68. Orlandini I, Riedel U (2004) Oxidation of propene and the formation of methyl nitrate in non-thermal plasma discharges. Catal Today 89(1–2):83–88

    Article  CAS  Google Scholar 

  69. Urashima K et al. (2000) Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. IEEE Trans Dielectr Electr Insul 7(5):602–614

  70. Subrahmanyam C, Renken A, Kiwi-Minsker L (2007) Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chem Eng J 134(1–3):78–83

    Article  CAS  Google Scholar 

  71. Holzer F, Roland U, Kopinke F-D (2002) Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 1. Accessibility of the intra-particle volume. Appl Catal B 38(3):163–181

    Article  CAS  Google Scholar 

  72. Kim H-H, Ogata A, Futamura S (2006) Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis. IEEE Trans Plasma Sci 34(3):984–995

    Article  CAS  Google Scholar 

  73. Van Durme J et al (2007) Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Appl Catal B 74(1–2):161–169

    Article  CAS  Google Scholar 

  74. Woo Seok K (2003) et al. Numerical study on influences of barrier arrangements on dielectric barrier discharge characteristics. Plasma Science, IEEE Transactions on 31(4):504–510

    Google Scholar 

  75. Chang J et al (2000) Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems. IEEE Trans Ind Appl 36(5):1251–1259

    Article  CAS  Google Scholar 

  76. Takuma T (1991) Field behaviour at a triple junction in composite dielectric arrangements. IEEE Trans Electr Insul 26(3):500–509

    Article  Google Scholar 

  77. Ogata A et al (1999) Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure. Plasma Chem Plasma Process 19(3):383–394

    Article  CAS  Google Scholar 

  78. Holzer F, Kopinke FD, Roland U (2005) Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chem Plasma Process 25(6):595–611

    Article  CAS  Google Scholar 

  79. Malik MA, Minamitani Y, Schoenbach KH (2005) Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor. IEEE Trans Plasma Sci 33(1):50–56

    Article  CAS  Google Scholar 

  80. Xin T et al (2011) Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor. J Phys D 44(27):274007

    Article  CAS  Google Scholar 

  81. Guo Y-F et al (2006) Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. J Mol Catal A 245(1–2):93–100

    Article  CAS  Google Scholar 

  82. Pylinina AI, Mikhalenko II (2013) Activation of Cu-, Ag-, Au/ZrO2 catalysts for dehydrogenation of alcohols by low-temperature oxygen and hydrogen plasma. Theoret Exp Chem 49(1):65–69

    Article  CAS  Google Scholar 

  83. Demidyuk V, Whitehead JC (2007) Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system. Plasma Chem Plasma Process 27(1):85–94

    Article  CAS  Google Scholar 

  84. Roland U, Holzer F, Kopinke FD (2002) Improved oxidation of air pollutants in a non-thermal plasma. Catal Today 73(3–4):315–323

    Article  CAS  Google Scholar 

  85. Cheng D-G, Zhu X (2007) Reduction of Pd/HZSM-5 using oxygen glow discharge plasma for a highly durable catalyst preparation. Catal Lett. 118(3–4):260–263

    Article  CAS  Google Scholar 

  86. Zou J-J, Zhang Y-P, Liu C-J (2006) Reduction of supported noble-metal ions using glow discharge plasma. Langmuir 22(26):11388–11394

    Article  CAS  Google Scholar 

  87. Liu C-J et al (2006) Plasma application for more environmentally friendly catalyst preparation. Pure Appl Chem. 78(6):1227–1238

    CAS  Google Scholar 

  88. Essakhi A et al (2011) Coating of structured catalytic reactors by plasma assisted polymerization of tetramethyldisiloxane. Polym Eng Sci 51(5):940–947

    Article  CAS  Google Scholar 

  89. Löfberg A et al (2011) Use of catalytic oxidation and dehydrogenation of hydrocarbons reactions to highlight improvement of heat transfer in catalytic metallic foams. Chem Eng J 176–177:49–56

    Article  CAS  Google Scholar 

  90. de Deugd R, Kapteijn F, Moulijn J (2003) Trends in Fischer–Tropsch reactor technology—opportunities for structured reactors. Top Catal 26(1–4):29–39

    Article  Google Scholar 

  91. Blin-Simiand N et al (2009) Removal of formaldehyde in nitrogen and in dry air by a DBD: importance of temperature and role of nitrogen metastable states. J Phys D 42(12):122003

    Article  CAS  Google Scholar 

  92. Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103(5):1685–1758

    Article  CAS  Google Scholar 

  93. Ruzzi M et al (2013) Time-resolved EPR study of singlet oxygen in the gas phase. J Phys Chem A 117(25):5232–5240

    Article  CAS  Google Scholar 

  94. Einaga H, Ibusuki T, Futamura S (2001) Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition. IEEE Trans Ind Appl 37(5):1476–1482

    Article  CAS  Google Scholar 

  95. Delagrange S, Pinard L, Tatibouët J-M (2006) Combination of a non-thermal plasma and a catalyst for toluene removal from air: manganese based oxide catalysts. Appl Catal B 68(3–4):92–98

    Article  CAS  Google Scholar 

  96. Grossmannova H, Neirynck D, Leys C (2006) Atmospheric discharge combined with Cu-Mn/Al2O3 catalyst unit for the removal of toluene. Czech J Phys 56(2):B1156–B1161

    Article  Google Scholar 

  97. Intriago L et al (2006) Combustion of trichloroethylene and dichloromethane over protonic zeolites: influence of adsorption properties on the catalytic performance. Microporous Mesoporous Mater 91(1–3):161–169

    Article  CAS  Google Scholar 

  98. Lu B et al (2006) Catalytic oxidation of benzene using DBD corona discharges. J Hazard Mater 137(1):633–637

    Article  CAS  Google Scholar 

  99. Han SB, Oda T (2007) Decomposition mechanism of trichloroethylene based on by-product distribution in the hybrid barrier discharge plasma process. Plasma Sources Sci Technol 16(2):413–421

    Article  CAS  Google Scholar 

  100. Delagrange S, Pinard L, Tatibouët JM (2006) Combination of a non-thermal plasma and a catalyst for toluene removal from air: manganese based oxide catalysts. Appl Catal B 68(3–4):92–98

    Article  CAS  Google Scholar 

  101. Demidiouk V, Moon SI, Chae JO (2003) Toluene and butyl acetate removal from air by plasma-catalytic system. Catal Commun 4(2):51–56

    Article  CAS  Google Scholar 

  102. Demidiouk V, Chae JO (2005) Decomposition of volatile organic compounds in plasma-catalytic system. IEEE Trans Plasma Sci 33(1):157–161

    Article  CAS  Google Scholar 

  103. Demidiouk V, Jae-Ou C (2005) Decomposition of volatile organic compounds in plasma-catalytic system. IEEE Trans Plasma Sci 33(1):157–161

    Article  CAS  Google Scholar 

  104. Magureanu M et al (2007) Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts. Appl Catal B 76(3–4):275–281

    Article  CAS  Google Scholar 

  105. Dhandapani B, Oyama ST (1997) Gas phase ozone decomposition catalysts. Appl Catal B 11(2):129–166

    Article  CAS  Google Scholar 

  106. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112(11):4406–4417

    Article  CAS  Google Scholar 

  107. Li Y et al (2014) Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts. Chem Eng J 241:251–258

    Article  CAS  Google Scholar 

  108. Liang S et al (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112(14):5307–5315

    Article  CAS  Google Scholar 

  109. Bo Z et al (2009) Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds. J Hazard Mater 166(2):1210–1216

    Article  CAS  Google Scholar 

  110. Li Y et al (2014) Removal of volatile organic compounds (VOCs) at room temperature using dielectric barrier discharge and plasma-catalysis. Plasma Chem Plasma Process 34(4):801–810

    Article  CAS  Google Scholar 

  111. Zhou J-W et al (2014) Catalytic oxidation of low concentration formaldehyde with the assist of ozone over supported cobalt-manganese composite oxides. J Mol Catal 28(1):60–66

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support from: the National High Technology Research and Development Program of China (2007AA061405, 2010AA064907), NSFC (Grant No. 50906050), Shanghai Natural Science Foundation (14ZR1421900) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Shangguan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Chen, M., Shi, J. et al. Catalysis Removal of Indoor Volatile Organic Compounds in Room Temperature: From Photocatalysis to Active Species Assistance Catalysis. Catal Surv Asia 19, 1–16 (2015). https://doi.org/10.1007/s10563-014-9177-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-014-9177-8

Keywords

Navigation