Catalysis Surveys from Asia

, Volume 17, Issue 3–4, pp 119–131 | Cite as

Catalytic Decomposition of Lignin Model Compounds to Aromatics over Acidic Catalysts

  • Hai Woong Park
  • Jeong Kwon Kim
  • Ung Gi Hong
  • Yoon Jae Lee
  • Ji Hwan Song
  • In Kyu Song


Recent progress on the catalytic decomposition of lignin model compounds to aromatics was reported in this review. Cesium-exchanged heteropolyacid catalysts (CsxH3.0−xPW12O40), palladium catalysts supported on cesium-exchanged heteropolyacid (Pd/CsxH3.0−xPW12O40), and palladium catalysts supported on various activated carbon aerogels (ACAs) (Pd/ACA-SO3H (X), Pd/XCs2.5H0.5PW12O40/ACA, Pd/CsxH3.0−xPW12O40/ACA, and Pd/Cs2.5H0.5PW12O40/ACA-SO3H) were prepared, and they were employed for the decomposition of C–O bond in lignin to aromatics. Phenethyl phenyl ether, benzyl phenyl ether, and 4-phenoxyphenol were used as dimeric lignin model compounds representing for β-O-4, α-O-4, and 4-O-5 bonds in lignin, respectively. It was observed that CsxH3.0−xPW12O40 and Pd/CsxH3.0−xPW12O40 were highly active for the decomposition of phenethyl phenyl ether and benzyl phenyl ether to aromatics. However, these catalysts showed very low catalytic performance in the decomposition of 4-phenoxyphenol. Palladium catalysts supported on various ACAs (Pd/ACA-SO3H (X), Pd/XCs2.5H0.5PW12O40/ACA, Pd/CsxH3.0−xPW12O40/ACA, and Pd/XCs2.5H0.5PW12O40/ACA-SO3H) were efficient for the decomposition of 4-phenoxyphenol to aromatics. Acidity of the catalysts played a key role in determining the catalytic performance in the decomposition of 4-phenoxyphenol to aromatics.


Lignin C–O bond Aromatics Heteropolyacid Sulfonic acid Activated carbon aerogel Palladium catalyst 



This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2009-C1AAA001-0093292).


  1. 1.
    Savage N (2011) Nature 474:S9CrossRefGoogle Scholar
  2. 2.
    Bungay HR (1982) Science 218:643CrossRefGoogle Scholar
  3. 3.
    Sanderson K (2011) Nature 474:S12CrossRefGoogle Scholar
  4. 4.
    McKendry P (2002) Bioresour Technol 83:47CrossRefGoogle Scholar
  5. 5.
    Stocker M (2008) Angew Chem Int Ed 47:9200CrossRefGoogle Scholar
  6. 6.
    Hamelinck CN, Hooijdonk G, Faaij AP (2005) Biomass Bioenergy 28:384CrossRefGoogle Scholar
  7. 7.
    Demiras A (2001) Energy Convers Manag 42:1357CrossRefGoogle Scholar
  8. 8.
    Nimz HH, Casten R (1986) Holz Roh-Werkstoff 44:207CrossRefGoogle Scholar
  9. 9.
    Kleinert M, Barth T (2008) Chem Eng Technol 31:736CrossRefGoogle Scholar
  10. 10.
    Jairo HL, Wolfgang GG (2002) J Polym Envrion 10:39CrossRefGoogle Scholar
  11. 11.
    Oasmaa A, Alen R (1993) Bioresour Technol 45:189CrossRefGoogle Scholar
  12. 12.
    Kleinert M, Barth T (2008) Energy Fuels 22:1371CrossRefGoogle Scholar
  13. 13.
    Thring RW, Breau J (1996) Fuel 75:795CrossRefGoogle Scholar
  14. 14.
    Elliott DC (2007) Energy Fuels 21:1792CrossRefGoogle Scholar
  15. 15.
    Britt PF, Buchanan AC, Cooney MJ, Martineau DR (2000) J Org Chem 65:1376CrossRefGoogle Scholar
  16. 16.
    Amen-Chen C, Pakdel H, Roy C (2001) Bioresour Technol 79:277CrossRefGoogle Scholar
  17. 17.
    Engel DJ, Steigleder KZ (1987) US Patent 4647704Google Scholar
  18. 18.
    Filley J, Roth C (1999) J Mol Catal A 139:245CrossRefGoogle Scholar
  19. 19.
    Strassberger Z, Tanase S, Rothenberg G (2011) Eur J Org Chem 27:5246CrossRefGoogle Scholar
  20. 20.
    Yoshikawa T, Yagi T, Shinohara S, Fukunage T, Nakasaka Y, Tago T, Masuda T (2013) Fuel Process Technol 108:69CrossRefGoogle Scholar
  21. 21.
    Binder JB, Gray MJ, White JF, Zhang ZC, Holladay JE (2009) Biomass Bioenergy 33:1122CrossRefGoogle Scholar
  22. 22.
    Evtuguin DV, Daniel AID, Silvestre AJD, Amad FML, Neto CP (2000) J Mol Catal A 154:217CrossRefGoogle Scholar
  23. 23.
    Cyr A, Chilts F, Jeanson P, Martel A, Brossard L, Lessard J, Menard H (2000) Can J Chem 78:307CrossRefGoogle Scholar
  24. 24.
    Yan N, Zhao C, Dyson PJ, Wang C, Liu L-T, Kou Y (2008) Chem Sus Chem 1:626CrossRefGoogle Scholar
  25. 25.
    Klein MT, Virk PS (1983) Ind Eng Chem Fundam 22:35CrossRefGoogle Scholar
  26. 26.
    Britt PF, Kidder MK, Buchanan AC (2007) Energy Fuels 21:3102CrossRefGoogle Scholar
  27. 27.
    Britt PF, Buchanan AC, Malcolm EA (1995) J Org Chem 60:6523CrossRefGoogle Scholar
  28. 28.
    Sato Y, Yamakawa T (1985) Ind Eng Chem Fundam 24:12CrossRefGoogle Scholar
  29. 29.
    Mahdavi B, Lafrance A, Martel A, Lessard J, Menard H (1997) J Appl Electrochem 27:605CrossRefGoogle Scholar
  30. 30.
    Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113Google Scholar
  31. 31.
    Keggin JF (1933) Nature 131:908CrossRefGoogle Scholar
  32. 32.
    Dawson B (1953) Acta Crystallogr 6:113CrossRefGoogle Scholar
  33. 33.
    Finke RG, Droege MW (1983) Inorg Chem 22:1006CrossRefGoogle Scholar
  34. 34.
    Alizadeh MH, Harmalker SP, Jeannin Y, Martin-Frère J, Pope MT (1985) J Am Chem Soc 107:2662CrossRefGoogle Scholar
  35. 35.
    Mizuno N, Misono M (1998) Chem Rev 98:199CrossRefGoogle Scholar
  36. 36.
    Moreno-Castilla C, Maldonado-Hodar FJ (2005) Carbon 43:455CrossRefGoogle Scholar
  37. 37.
    Lee YJ, Jung JC, Park S, Seo JG, Baeck S-H, Yoon JR, Yi J, Song IK (2011) Korean J Chem Eng 28:492CrossRefGoogle Scholar
  38. 38.
    Lee YJ, Jung JC, Yi J, Baeck S-H, Yoon JR, Song IK (2010) Curr Appl Phys 10:682CrossRefGoogle Scholar
  39. 39.
    Lee YJ, Jung JC, Park S, Seo JG, Baeck S-H, Yoon JR, Yi J, Song IK (2011) Curr Appl Phys 11:1CrossRefGoogle Scholar
  40. 40.
    Kim H-J, Kim J-H, Kim W-I, Suh DJ (2005) Korean J Chem Eng 22:740CrossRefGoogle Scholar
  41. 41.
    Pekala RW (1989) J Mater Sci 24:3221CrossRefGoogle Scholar
  42. 42.
    Fang B, Binder L (2006) J Power Sour 163:616CrossRefGoogle Scholar
  43. 43.
    Hanzawa Y, Kaneko K (1996) Langmuir 12:6167CrossRefGoogle Scholar
  44. 44.
    Ling SK, Tian HY, Wang S, Rufford T, Zhu ZH, Buckley CE (2011) J Colloid Interface Sci 357:157CrossRefGoogle Scholar
  45. 45.
    Namane A, Mekarzia A, Benrachedi K, Belhaneche-Bensemra N, Hellal A (2005) J Hazard Mater B 119:189CrossRefGoogle Scholar
  46. 46.
    Zhang S, Fu R, Wu D, Xu W, Ye W, Ye Q, Chen Z (2004) Carbon 42:3209CrossRefGoogle Scholar
  47. 47.
    Park HW, Park S, Park DR, Choi JH, Song IK (2010) Catal Commun 12:1CrossRefGoogle Scholar
  48. 48.
    Park HW, Park S, Park DR, Choi JH, Song IK (2010) Korean J Chem Eng 28:1177CrossRefGoogle Scholar
  49. 49.
    Park HW, Park S, Park DR, Choi JH, Song IK (2011) J Ind Eng Chem 17:736CrossRefGoogle Scholar
  50. 50.
    Park HW, Hong UG, Lee YJ, Song IK (2011) Appl Catal A 409–410:167CrossRefGoogle Scholar
  51. 51.
    Park HW, Hong UG, Lee YJ, Song IK (2012) Catal Commun 20:89CrossRefGoogle Scholar
  52. 52.
    Park HW, Hong UG, Lee YJ, Choi JH, Song IK (2012) Appl Catal A 437–438:112CrossRefGoogle Scholar
  53. 53.
    Park HW, Hong UG, Lee YJ, Choi JH, Song IK (2013) J Nanosci Nanotechnol 13:7963CrossRefGoogle Scholar
  54. 54.
    Park HW, Kim JK, Hong UG, Lee YJ, Choi JH, Song IK (2013) Appl Catal A 453:287CrossRefGoogle Scholar
  55. 55.
    Park HW, Kim JK, Hong UG, Lee YJ, Choi JH, Song IK (2013) Appl Catal A 456:59CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hai Woong Park
    • 1
  • Jeong Kwon Kim
    • 1
  • Ung Gi Hong
    • 1
  • Yoon Jae Lee
    • 1
  • Ji Hwan Song
    • 1
  • In Kyu Song
    • 1
  1. 1.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulKorea

Personalised recommendations