Advertisement

Catalysis Surveys from Asia

, Volume 17, Issue 2, pp 85–102 | Cite as

A Study of the Zn-based Desulfurization Sorbents for H2S Removal in the IGCC

  • Suk Yong Jung
  • Soo Chool Lee
  • Hee Kwon Jun
  • Jae Chang Kim
Article

Abstract

The various Zn-based sorbents were prepared by physical mixing method and co-precipitation method. The sulfur removing capacity and regeneration properties of the various sorbents were measured in fixed bed reactor at middle temperature condition (sulfidation process 480 °C, regeneration process 580 °C). The sulfur removing capacities of the sorbents were depended on the physical properties such as pore volume, surface area and particle size. The Zn-based sorbents prepared by co-precipitation method were higher pore volume, surface area and smaller particle size resulting in the higher capacities than those prepared by the physical mixing method. To improve the regeneration properties of the sorbents, the various promoters such as cobalt, iron, nickel and cerium were added to the sorbents. The promoters have various roles with the kind of promoter. The roles of promoters could be explained by heat effect and catalytic effect of the promoters. Also, the alloyed structure like spinel structure (ZnTi2O4) has been proposed to explain the superior regeneration properties compared to the single ZnO structure. In addition, the simultaneous removals of the H2S and NH3 over the Zn–Al-based sorbents were tested at 650 °C. So, the new process for simultaneous removal using the developed Zn-based sorbents could be proposed. The role of promoters, effect of hydrogen potential pressure and the deactivation mechanism including the sulfidation of metal oxide to metal sulfide were also discussed.

Keywords

H2NH3 Sulfidation Regeneration Zn-based sorbent Simultaneous removal Decomposition 

Notes

Acknowledgments

We acknowledge the financial support by grants from Korea CCS R&D Center, funded by the Ministry of Education, Science and Technology of Korean government and Energy Efficiency and Resources R&D program (2011201020004A) under the Ministry of Knowledge Economy, Republic of Korea.

References

  1. 1.
    Kwon KC, Park YK, Gangwal SK, Das K (2003) Sep Sci Technol 12:3289CrossRefGoogle Scholar
  2. 2.
    Han W, Jin H, Xu W (2007) Energy 32:1334CrossRefGoogle Scholar
  3. 3.
    Bu X, Ying Y, Ji X, Zhang C, Peng W (2007) Fuel Process Technol 88:143CrossRefGoogle Scholar
  4. 4.
    Haupt G, Zimmermann G, Baumann HR, Ullrich N, Pruschek R, Oeljeklaus G (1997) Gasification technologies conference, SanfranciscoGoogle Scholar
  5. 5.
    Shilling NZ, Lee DT (2003) PowerGen AsiaGoogle Scholar
  6. 6.
    Gangwal SK, Turk B, Coker D, Howe G, Gupta RP, Kamarthi R, Leininger T, Jain S (2004) 21st annual international Pittsburgh coal conference, PittsburghGoogle Scholar
  7. 7.
    Mandal BP, Bandyopadhyay BB (2005) Chem Eng Sci 60:6438CrossRefGoogle Scholar
  8. 8.
    Rutkowski MD, Klett MG, Zaharchuk R (1997) Parsons Power Group Inc. 2657 Morgantown Road, Reading, PA, 19607Google Scholar
  9. 9.
    Wakker JP (1992) PhD. Thesis, TU Delft, NetherlandsGoogle Scholar
  10. 10.
    Thambimuthu K (1993) IEA Coal Research, LondonGoogle Scholar
  11. 11.
    Soerawidjaja TH (1985) PhD. Thesis, TU Delft, NetherlandsGoogle Scholar
  12. 12.
    Jang HT, Kim SB, Doh DS (2003) Korean J Chem Eng 20(1):116CrossRefGoogle Scholar
  13. 13.
    Lee HS, Kim JY, Yu JK, Kil IS, Km DH, Lee TJ, Rhee YW (2005) Korean J Chem Eng 22(6):889CrossRefGoogle Scholar
  14. 14.
    Lee HS, Kang MP, Song YS, Lee TJ, Rhee YW (2001) Korean J Chem Eng 18(5):635CrossRefGoogle Scholar
  15. 15.
    Song YK, Lee KB, Lee HS, Rhee YW (2000) Korean J Chem Eng 17(6):691CrossRefGoogle Scholar
  16. 16.
    Konttinen JT, Zevenhoven CAP, Hupa MM (1997) Ind Eng Chem Res 36:2340CrossRefGoogle Scholar
  17. 17.
    Woudstra Th, Woudstra N (1995) J Inst Energy 68:157Google Scholar
  18. 18.
    Gibson JB, Harrison DP (1980) Ind Eng Chem Prod Res Dev 19:231CrossRefGoogle Scholar
  19. 19.
    Gangwal SK, Stogner JM, Harkins SM (1989) Environ Prog 8:265CrossRefGoogle Scholar
  20. 20.
    Lew S, Jothimurugesan K, Flytzani-Stephanopoulos M (1989) Ind Eng Chem Res 28:535CrossRefGoogle Scholar
  21. 21.
    Bu X, Ying Y, Zhang C, Peng W (2008) Powder Technol 180:253CrossRefGoogle Scholar
  22. 22.
    Yumura M, Furimsky E (1985) Ind Eng Chem Process Des Dev 24:1165CrossRefGoogle Scholar
  23. 23.
    Kobayashi M, Flyzani-Stephanopoulos M (2002) Ind Eng Chem Res 41:3115CrossRefGoogle Scholar
  24. 24.
    Lee YS, Kim HT, Yoo HO (1995) Ind Eng Chem Res 34:1181CrossRefGoogle Scholar
  25. 25.
    Wakker JP, Gerritsen AW, Jacob A, Moulijn JA (1993) Ind Eng Chem Res 32:139CrossRefGoogle Scholar
  26. 26.
    Lee YS, Kim DS, Kim KH, Kim HT, Yoo KO (1996) Korean J Chem Eng 13(4):427CrossRefGoogle Scholar
  27. 27.
    Yi CK, Jo SH, Lee BH, Lee SY, Son JE, Jin GT (2001) Korean J Chem Eng 18(6):1005CrossRefGoogle Scholar
  28. 28.
    Lee TJ, Cho IH, Park NK (2009) Korean J Chem Eng 26(2):582CrossRefGoogle Scholar
  29. 29.
    Jothimurugesan K, Gangwal SK (1998) Ind Eng Chem Res 37:1929CrossRefGoogle Scholar
  30. 30.
    Siriwardane RV, Grimm U, Poston J, Monaco S (1994) Proceedings of the coal-fired power systems 94—advances in IGCC and PFBC review meetingGoogle Scholar
  31. 31.
    Siriwardane RV, Poston JA, Hammerbeck K (1997) Proceedings of the advanced coal-based power and environmental systems 97 conference, PittsburghGoogle Scholar
  32. 32.
    Ayala RE, Chuck T, Gal E, Gupta RP, Cicero DC (1994) Proceedings of the coal-powered systems 94—advances in IGCC and PFBC review meetingGoogle Scholar
  33. 33.
    Ayala RE, Feitelberg AS, Furman AH (1995) Proceedings of twelfth annual international Pittsburgh coal conference, PittsburghGoogle Scholar
  34. 34.
    Sanchez-Hervas JM, Otero J, Ruiz E (2005) Chem Eng Sci 60:2977CrossRefGoogle Scholar
  35. 35.
    Gupta RP, Gangwal SK, Cicero DC (1995) Proceedings of the advanced coal-powered systems ‘95 review meetingGoogle Scholar
  36. 36.
    Konttinen J, Salo K, Ghazanfari R, Feher G, Lehtovaara A, Mojtahedi W, Dorchak TP (1995) Proceedings of the advanced coal-powered systems ‘95 review meetingGoogle Scholar
  37. 37.
    Lehtovaara A, Konttinen J, Salo K, Feher G, Ghazanfari R, Mojtahedi W, Dorchak TP (1995) Proceedings of twelfth annual international Pittsburgh coal conference, PittsburghGoogle Scholar
  38. 38.
    Greenwood GJ, Khare GP, Kubicek DH, Delzer GA, Kinsinger DL (1995) Proceedings of the coal-fired power system 95—advances in IGCC and PFBC review meetingGoogle Scholar
  39. 39.
    Gangwal SK, Gupta RP, Cicero DC (1995) Proceedings of the advanced coal-fired power system ‘95 review meetingGoogle Scholar
  40. 40.
    Khare GP, Delzer GA, Kubicek DH, Greenwork GJ (1995) Environ Prog 146:146CrossRefGoogle Scholar
  41. 41.
    Ayala RE, Venkataramani VS, Abbasian J, Hill Ah, Cicero DC (1995) Proceedings of the advanced coal-powered systems ‘95 review meetingGoogle Scholar
  42. 42.
    Kang SC, Jun HK, Lee TJ, Ryu SO, Kim JC (2002) Hwahak Konghak 40:289Google Scholar
  43. 43.
    Jun HK, Jung SY, Lee TJ, Kim JC (2004) Korean J Chem Eng 21:425CrossRefGoogle Scholar
  44. 44.
    Jun HK, Lee TJ, Ryu SO, Kim JC (2001) Ind Eng Chem Res 40:3547CrossRefGoogle Scholar
  45. 45.
    Jun HK, Lee TJ, Kim JC (2002) Ind Eng Chem Res 41:4733CrossRefGoogle Scholar
  46. 46.
    Jun HK, Lee TJ, Ryu SO, Yi CK, Ryu CK, Kim JC (2004) Energy Fuel 18:41CrossRefGoogle Scholar
  47. 47.
    Jun HK, Jung SY, Lee TJ, Ryu CK, Kim JC (2003) Catal Today 87:3CrossRefGoogle Scholar
  48. 48.
    Jung SY, Lee SJ, Lee SC, Park JJ, Jun HK, Lee HJ, Ryu Ck, Kim JC (2008) Sep Purif Technol 63:297CrossRefGoogle Scholar
  49. 49.
    Jung SY, Lee SJ, Lee TJ, Ryu CK, Kim JC (2006) Catal Today 111:217CrossRefGoogle Scholar
  50. 50.
    Jung SY, Jun HK, Lee SJ, Lee TJ, Ryu CK, Kim JC (2005) Environ Sci Technol 39:9324CrossRefGoogle Scholar
  51. 51.
    Jung SY, Lee SJ, Park JJ, Lee SC, Jun HK, Lee TJ, Ryu CK, Kim JC (2008) Ind Eng Chem Res 4:4909CrossRefGoogle Scholar
  52. 52.
    Jung SY, Park JJ, Lee SJ, Jun HK, Lee SC, Kim JC (2009) Korean J Chem Eng 27(5):1428CrossRefGoogle Scholar
  53. 53.
    Kim KS, Park NK (2010) Korean J Chem Eng 27(6):1715CrossRefGoogle Scholar
  54. 54.
    Lee TJ, Kwon WT, Chang WC, Kim JC (1997) Korean J Chem Eng 14(6):513CrossRefGoogle Scholar
  55. 55.
    Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50:285CrossRefGoogle Scholar
  56. 56.
    Trovarelli A, Leitenburg C, Boaro DM, Dolcetti G (1999) Catal Today 50:353CrossRefGoogle Scholar
  57. 57.
    Wang S, Wang W, Zuo J, Qian Y (2001) Mater Chem Phys 68:246CrossRefGoogle Scholar
  58. 58.
    Thormahlen P, Fridell E, Cruise N, Skoglundh M, Palmqvist A (2001) Appl Catal 31:1CrossRefGoogle Scholar
  59. 59.
    Sutasinee KN, Koji I, Takaaki K, Aika KI (2004) Water Res 38:778CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Suk Yong Jung
    • 1
  • Soo Chool Lee
    • 1
  • Hee Kwon Jun
    • 2
  • Jae Chang Kim
    • 1
  1. 1.Department of Chemical EngineeringKyungpook National UniversityDaeguSouth Korea
  2. 2.GS Caltex Co.DaejeonSouth Korea

Personalised recommendations