Skip to main content
Log in

Catalytic Performance and Kinetic Models on Zirconium Phosphate Modified Ru/Co/SiO2 Fischer–Tropsch Catalyst

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The present paper represents the promising ways to improve catalytic performance by introducing zirconium phosphate (ZP) on Ru/Co/SiO2 catalysts and the related kinetic models using the optimized Fischer–Tropsch synthesis (FTS) catalyst. A lot of works has been reported using cobalt-based catalyst for FTS reaction, and many authors have continuously tried to find out highly efficient FTS catalyst by modifying support as well as by introducing promoters. Silica is one of the excellent candidates as catalytic supports, and the present works intensively represents how to modify SiO2 support for a high catalytic performance by using ZP species. The effect of ZP-modification of SiO2 support with respect to cobalt aggregation and catalytic deactivation was mainly investigated for FTS reaction. The surface modification at P/(Zr + P) molar ratio between 0.029 and 0.134, enhanced the spatial confinement effect of cobalt clusters, and resulted in high catalytic stability with the help of well-dispersed ZP particle formation. The enhanced catalytic performance, in terms of CO conversion, C5+ selectivity and catalytic stability, is mainly attributed to the suppressed aggregation, a homogeneous distribution of cobalt clusters with a proper size and a low mobility of cobalt clusters at an optimum molar ratio of P/(Zr + P) because of the formation of thermally stable ZP particles. The kinetic parameters and rate equations on the optimized catalyst are also derived in terms of CO conversion and product distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692

    Article  CAS  Google Scholar 

  2. Iglesia E (1997) Appl Catal A 161:59

    Article  CAS  Google Scholar 

  3. Bae JW, Kim IG, Lee JS, Lee KH, Jang EJ (2003) Appl Catal A 240:129

    Article  CAS  Google Scholar 

  4. Sai Prasad PS, Bae JW, Jun KW, Lee KW (2008) Catal Surv Asia 12:170

    Article  Google Scholar 

  5. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A 233:263

    Article  CAS  Google Scholar 

  6. Zhang J, Chen J, Ren J, Sun Y (2003) Appl Catal A 243:121

    Article  CAS  Google Scholar 

  7. van Steen E, Sewell GS, Makhothe RA, Micklethwaite C, Manstein H, de Lange M, O’Connor CT (1996) J Catal 162:220

    Article  Google Scholar 

  8. Rosynek MP, Polansky CA (1991) Appl Catal 73:97

    Article  CAS  Google Scholar 

  9. Oukaci R, Singleton AH, Goodwin JG Jr (1999) Appl Catal A 186:129

    Article  CAS  Google Scholar 

  10. Tsubaki N, Sun S, Fujimoto K (2001) J Catal 199:236

    Article  CAS  Google Scholar 

  11. Song SH, Lee SB, Bae JW, Sai Prasad PS, Jun KW (2008) Catal Commun 9:2282

    Article  CAS  Google Scholar 

  12. Bae JW, Lee YJ, Park JY, Jun KW (2008) Energy Fuels 22:2885

    Article  CAS  Google Scholar 

  13. Borg O, Eri S, Blekkan EA, Storsaeter S, Wigum H, Rytter E, Holmen A (2007) J Catal 248:89

    Article  CAS  Google Scholar 

  14. Xiong H, Zhang Y, Wang W, Li J (2005) Catal Commun 6:512

    Article  CAS  Google Scholar 

  15. Khodakov AY, Griboval-Constant A, Bechara R, Villain F (2001) J Phys Chem B 105:9805

    Article  CAS  Google Scholar 

  16. Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) J Catal 206:230

    Article  CAS  Google Scholar 

  17. Rohr F, Lindvag OA, Holmen A, Blekkan EA (2000) Catal Today 58:247

    Article  CAS  Google Scholar 

  18. Zhang Y, Shinoda M, Tsubaki N (2004) Catal Today 93–95:55

    Article  Google Scholar 

  19. Park SJ, Bae JW, Oh JH, Chary KVR, Sai Prasad PS, Jun KW, Rhee YW (2009) J Mol Catal A 298:81

    Article  CAS  Google Scholar 

  20. Chary KVR, Ramesh G, Kishan K, Kumar ChP, Vidyasagar G (2003) Langmuir 19:4548

    Article  CAS  Google Scholar 

  21. Bautista FM, Campelo JM, Garcia A, Luna D, Marinas JM, Romero AA, Colon G, Navio JA, Macias M (1998) J Catal 179:483

    Article  CAS  Google Scholar 

  22. Iwamoto R, Grimblot J (2000) Adv Catal 44:417

    Article  Google Scholar 

  23. Bradford MCJ, Te M, Pollack A (2005) Appl Catal A 283:39

    Article  CAS  Google Scholar 

  24. Quartararo J, Guelton M, Rigole M, Amoureux JP, Fernandez C, Grimblot J (1999) J Mater Chem 9:2637

    Article  CAS  Google Scholar 

  25. Cheng S, Clearfield A (1985) J Catal 94:455

    Article  CAS  Google Scholar 

  26. Kumar VS, Padmasri AH, Satyanarayana CVV, Reddy AK, Rao Raju BD, Rama KS (2006) Catal Commun 7:745

    Article  Google Scholar 

  27. Yuan ZY, Ren TZ, Azioune A, Pireaux JJ, Su BL (2005) Catal Today 105:647

    Article  CAS  Google Scholar 

  28. Alfaya AAS, Gushikem Y, de Castro SC (2000) Microporous Mesoporous Mater 39:57

    Article  CAS  Google Scholar 

  29. Bae JW, Kim SM, Park SJ, Lee YJ, Ha KS, Jun KW (2010) Catal Commun 11:834

    Article  CAS  Google Scholar 

  30. Bae JW, Park SJ, Woo MH, Cheon JY, Ha KS, Jun KW, Lee DH, Jung HM (2011) ChemCatChem 8:1342

    Article  Google Scholar 

  31. Kwack SH, Park MJ, Bae JW, Ha KS, Jun KW (2011) React Kinet Mech Catal 104:483

    Article  CAS  Google Scholar 

  32. Kwack SH, Bae JW, Park MJ, Kim SM, Ha KS, Jun KW (2011) Fuel 90:1383

    Article  CAS  Google Scholar 

  33. Shinoda M, Zhang Y, Yoneyama Y, Hasegawa K, Tsubaki N (2004) Fuel Process Technol 86:73

    Article  CAS  Google Scholar 

  34. Shi L, Chen J, Feng K, Sun Y (2008) Fuel 87:521

    Article  CAS  Google Scholar 

  35. Moradi GR, Basir MM, Taeb A, Kiennemann A (2003) Catal Commun 4:27

    Article  CAS  Google Scholar 

  36. Bae JW, Kim SM, Lee YJ, Lee MJ, Jun KW (2009) Catal Commun 10:1358

    Article  CAS  Google Scholar 

  37. Bae JW, Kim SM, Kang SH, Chary KVR, Lee YJ, Kim HJ, Jun KW (2009) J Mol Catal A 311:7

    Article  CAS  Google Scholar 

  38. Enache DI, Rebours B, Roy-Auberger M, Revel R (2002) J Catal 205:346

    Article  CAS  Google Scholar 

  39. Bae JW, Kim SM, Park SJ, Sai Prasad PS, Lee YJ, Jun KW (2008) Ind Eng Chem Res 48:3228

    Article  Google Scholar 

  40. Kim SM, Bae JW, Lee YJ, Jun KW (2008) Catal Commun 9:2269

    Article  CAS  Google Scholar 

  41. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, Jos van Dillen A, de Jong KP (2006) J Am Chem Soc 128:3956

    Article  CAS  Google Scholar 

  42. Van de Loosdrecht J, Balzhinimaev B, Dalmon JA, Niemantsverdriet J, Tsybulya SV, Saib AM, van Berge PJ, Visagie JL (2007) Catal Today 123:293

    Article  Google Scholar 

  43. Khodakov AY, Girardon JS, Griboval-Constant A, Lermontov AS, Chernavskii PA (2004) Stud Surf Sci Catal 147:295

    Article  CAS  Google Scholar 

  44. Ren TZ, Yuan ZY, Su BL (2003) Chem Phys Lett 374:170

    Article  CAS  Google Scholar 

  45. Mekhemer GAH (1998) Colloids Surf A 141:227

    Article  CAS  Google Scholar 

  46. Busca G, Lorenzelli V, Galli P, La Ginestra A, Patrono P (1987) J Chem Soc Faraday Trans 183:853

    Google Scholar 

  47. Salas P, Wang JA, Armendariz H, Angeles-Chavez C, Chen LF (2009) Mater Chem Phys 114:139

    Article  CAS  Google Scholar 

  48. Zhan Z, Zeng HC (1999) J Non-Cryst Solids 243:26

    Article  CAS  Google Scholar 

  49. Song D, Li J, Cai Q (2007) J Phys Chem C 111:18970

    Article  CAS  Google Scholar 

  50. Trobajo C, Khainakov SA, Espina A, Garcia JR (2000) Chem Mater 12:1787

    Article  CAS  Google Scholar 

  51. Khodakov AY, Lynch J, Bazin D, Rebours B, Zanier N, Moisson B, Chaumette P (1997) J Catal 168:16

    Article  CAS  Google Scholar 

  52. Schulz H, Nie Z, Ousmanov F (2002) Catal Today 71:351

    Article  CAS  Google Scholar 

  53. Lee YJ, Park JY, Jun KW, Bae JW, Sai Prasad PS (2009) Catal Lett 130:198

    Article  CAS  Google Scholar 

  54. Ponec V, van Barneveld WA (1979) Ind Eng Chem Prod Res Dev 18:268

    Article  CAS  Google Scholar 

  55. Rofer-DePoorter CK (1981) Chem Rev 81:447

    Article  CAS  Google Scholar 

  56. Ernst KH, Schwarz E, Christmann K (1994) J Chem Phys 101:5388

    Article  CAS  Google Scholar 

  57. Kummer JT, DeWitt TW, Emmett PH (1948) J Am Chem Soc 70:3632

    Article  CAS  Google Scholar 

  58. van Steen E, Schulz H (1999) Appl Catal A 186:309

    Article  Google Scholar 

  59. Bell AT (1980) Catal Rev Sci Eng 23:203

    Article  Google Scholar 

  60. Kellner CS, Bell AT (1981) J Catal 70:418

    Article  CAS  Google Scholar 

  61. Hovi JP, Lahtinen J, Liu ZS, Nieminen RM (1995) J Chem Phys 102:7674

    Article  CAS  Google Scholar 

  62. van Barneveld WAA, Ponec V (1984) J Catal 88:382

    Article  Google Scholar 

  63. Joyner RW (1988) Catal Lett 1:307

    Article  CAS  Google Scholar 

  64. Schulz H, Beck K, Erich E (1988) Fuel Process Technol 18:293

    Article  CAS  Google Scholar 

  65. Schulz H, van Steen E, Claeys M (1993) Selective hydrogenation and dehydrogenation. DGMK, Kassel

    Google Scholar 

  66. Henrici-Olive G, Olive S (1984) The chemistry of the catalytic hydrogenation of carbon monoxide. Springer, Berlin

    Book  Google Scholar 

  67. Eidus YT (1967) Russ Chem Rev 36:338

    Article  Google Scholar 

  68. Kibby CL, Pannell RB, Kobylinski TP (1984) ACS Div Petrol Prepr 29:1113

    CAS  Google Scholar 

  69. Dictor RA, Bell AT (1986) J Catal 97:121

    Article  CAS  Google Scholar 

  70. Huff G Jr, Satterfield CN (1984) Ind Eng Chem Prod Res Dev 23:696

    Article  CAS  Google Scholar 

  71. van der Laan GP, Beenackers AACM (1999) Catal Rev Sci Eng 41:255

    Article  Google Scholar 

  72. Lox ES, Froment GF (1993) Ind Eng Chem Res 32:71

    Article  CAS  Google Scholar 

  73. Donnelly TJ, Satterfield CN (1989) Appl Catal 52:93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was also supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) under “Energy Efficiency & Resources Programs” with Project number of 2011T100200023 and 2010201010008A. Dr. Bae also would like to acknowledge the financial support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST; 2011-0009003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Wook Bae or Myung-June Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, B., Jang, I.H., Bae, J.W. et al. Catalytic Performance and Kinetic Models on Zirconium Phosphate Modified Ru/Co/SiO2 Fischer–Tropsch Catalyst. Catal Surv Asia 16, 121–137 (2012). https://doi.org/10.1007/s10563-012-9139-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-012-9139-y

Keywords

Navigation