Advertisement

Catalysis Surveys from Asia

, Volume 16, Issue 3, pp 121–137 | Cite as

Catalytic Performance and Kinetic Models on Zirconium Phosphate Modified Ru/Co/SiO2 Fischer–Tropsch Catalyst

  • BalSang Lee
  • In Hyeok Jang
  • Jong Wook Bae
  • Soong Ho Um
  • Pil J. Yoo
  • Myung-June Park
  • Yong Chul Lee
  • Ki-Won Jun
Article

Abstract

The present paper represents the promising ways to improve catalytic performance by introducing zirconium phosphate (ZP) on Ru/Co/SiO2 catalysts and the related kinetic models using the optimized Fischer–Tropsch synthesis (FTS) catalyst. A lot of works has been reported using cobalt-based catalyst for FTS reaction, and many authors have continuously tried to find out highly efficient FTS catalyst by modifying support as well as by introducing promoters. Silica is one of the excellent candidates as catalytic supports, and the present works intensively represents how to modify SiO2 support for a high catalytic performance by using ZP species. The effect of ZP-modification of SiO2 support with respect to cobalt aggregation and catalytic deactivation was mainly investigated for FTS reaction. The surface modification at P/(Zr + P) molar ratio between 0.029 and 0.134, enhanced the spatial confinement effect of cobalt clusters, and resulted in high catalytic stability with the help of well-dispersed ZP particle formation. The enhanced catalytic performance, in terms of CO conversion, C5+ selectivity and catalytic stability, is mainly attributed to the suppressed aggregation, a homogeneous distribution of cobalt clusters with a proper size and a low mobility of cobalt clusters at an optimum molar ratio of P/(Zr + P) because of the formation of thermally stable ZP particles. The kinetic parameters and rate equations on the optimized catalyst are also derived in terms of CO conversion and product distribution.

Keywords

Fischer–Tropsch synthesis Cobalt Zirconium phosphate Aggregation Spatial confinement SiO2 Deactivation Rate equations Kinetic parameters 

Notes

Acknowledgments

This work was also supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) under “Energy Efficiency & Resources Programs” with Project number of 2011T100200023 and 2010201010008A. Dr. Bae also would like to acknowledge the financial support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST; 2011-0009003).

References

  1. 1.
    Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692CrossRefGoogle Scholar
  2. 2.
    Iglesia E (1997) Appl Catal A 161:59CrossRefGoogle Scholar
  3. 3.
    Bae JW, Kim IG, Lee JS, Lee KH, Jang EJ (2003) Appl Catal A 240:129CrossRefGoogle Scholar
  4. 4.
    Sai Prasad PS, Bae JW, Jun KW, Lee KW (2008) Catal Surv Asia 12:170CrossRefGoogle Scholar
  5. 5.
    Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A 233:263CrossRefGoogle Scholar
  6. 6.
    Zhang J, Chen J, Ren J, Sun Y (2003) Appl Catal A 243:121CrossRefGoogle Scholar
  7. 7.
    van Steen E, Sewell GS, Makhothe RA, Micklethwaite C, Manstein H, de Lange M, O’Connor CT (1996) J Catal 162:220CrossRefGoogle Scholar
  8. 8.
    Rosynek MP, Polansky CA (1991) Appl Catal 73:97CrossRefGoogle Scholar
  9. 9.
    Oukaci R, Singleton AH, Goodwin JG Jr (1999) Appl Catal A 186:129CrossRefGoogle Scholar
  10. 10.
    Tsubaki N, Sun S, Fujimoto K (2001) J Catal 199:236CrossRefGoogle Scholar
  11. 11.
    Song SH, Lee SB, Bae JW, Sai Prasad PS, Jun KW (2008) Catal Commun 9:2282CrossRefGoogle Scholar
  12. 12.
    Bae JW, Lee YJ, Park JY, Jun KW (2008) Energy Fuels 22:2885CrossRefGoogle Scholar
  13. 13.
    Borg O, Eri S, Blekkan EA, Storsaeter S, Wigum H, Rytter E, Holmen A (2007) J Catal 248:89CrossRefGoogle Scholar
  14. 14.
    Xiong H, Zhang Y, Wang W, Li J (2005) Catal Commun 6:512CrossRefGoogle Scholar
  15. 15.
    Khodakov AY, Griboval-Constant A, Bechara R, Villain F (2001) J Phys Chem B 105:9805CrossRefGoogle Scholar
  16. 16.
    Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) J Catal 206:230CrossRefGoogle Scholar
  17. 17.
    Rohr F, Lindvag OA, Holmen A, Blekkan EA (2000) Catal Today 58:247CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Shinoda M, Tsubaki N (2004) Catal Today 93–95:55CrossRefGoogle Scholar
  19. 19.
    Park SJ, Bae JW, Oh JH, Chary KVR, Sai Prasad PS, Jun KW, Rhee YW (2009) J Mol Catal A 298:81CrossRefGoogle Scholar
  20. 20.
    Chary KVR, Ramesh G, Kishan K, Kumar ChP, Vidyasagar G (2003) Langmuir 19:4548CrossRefGoogle Scholar
  21. 21.
    Bautista FM, Campelo JM, Garcia A, Luna D, Marinas JM, Romero AA, Colon G, Navio JA, Macias M (1998) J Catal 179:483CrossRefGoogle Scholar
  22. 22.
    Iwamoto R, Grimblot J (2000) Adv Catal 44:417CrossRefGoogle Scholar
  23. 23.
    Bradford MCJ, Te M, Pollack A (2005) Appl Catal A 283:39CrossRefGoogle Scholar
  24. 24.
    Quartararo J, Guelton M, Rigole M, Amoureux JP, Fernandez C, Grimblot J (1999) J Mater Chem 9:2637CrossRefGoogle Scholar
  25. 25.
    Cheng S, Clearfield A (1985) J Catal 94:455CrossRefGoogle Scholar
  26. 26.
    Kumar VS, Padmasri AH, Satyanarayana CVV, Reddy AK, Rao Raju BD, Rama KS (2006) Catal Commun 7:745CrossRefGoogle Scholar
  27. 27.
    Yuan ZY, Ren TZ, Azioune A, Pireaux JJ, Su BL (2005) Catal Today 105:647CrossRefGoogle Scholar
  28. 28.
    Alfaya AAS, Gushikem Y, de Castro SC (2000) Microporous Mesoporous Mater 39:57CrossRefGoogle Scholar
  29. 29.
    Bae JW, Kim SM, Park SJ, Lee YJ, Ha KS, Jun KW (2010) Catal Commun 11:834CrossRefGoogle Scholar
  30. 30.
    Bae JW, Park SJ, Woo MH, Cheon JY, Ha KS, Jun KW, Lee DH, Jung HM (2011) ChemCatChem 8:1342CrossRefGoogle Scholar
  31. 31.
    Kwack SH, Park MJ, Bae JW, Ha KS, Jun KW (2011) React Kinet Mech Catal 104:483CrossRefGoogle Scholar
  32. 32.
    Kwack SH, Bae JW, Park MJ, Kim SM, Ha KS, Jun KW (2011) Fuel 90:1383CrossRefGoogle Scholar
  33. 33.
    Shinoda M, Zhang Y, Yoneyama Y, Hasegawa K, Tsubaki N (2004) Fuel Process Technol 86:73CrossRefGoogle Scholar
  34. 34.
    Shi L, Chen J, Feng K, Sun Y (2008) Fuel 87:521CrossRefGoogle Scholar
  35. 35.
    Moradi GR, Basir MM, Taeb A, Kiennemann A (2003) Catal Commun 4:27CrossRefGoogle Scholar
  36. 36.
    Bae JW, Kim SM, Lee YJ, Lee MJ, Jun KW (2009) Catal Commun 10:1358CrossRefGoogle Scholar
  37. 37.
    Bae JW, Kim SM, Kang SH, Chary KVR, Lee YJ, Kim HJ, Jun KW (2009) J Mol Catal A 311:7CrossRefGoogle Scholar
  38. 38.
    Enache DI, Rebours B, Roy-Auberger M, Revel R (2002) J Catal 205:346CrossRefGoogle Scholar
  39. 39.
    Bae JW, Kim SM, Park SJ, Sai Prasad PS, Lee YJ, Jun KW (2008) Ind Eng Chem Res 48:3228CrossRefGoogle Scholar
  40. 40.
    Kim SM, Bae JW, Lee YJ, Jun KW (2008) Catal Commun 9:2269CrossRefGoogle Scholar
  41. 41.
    Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, Jos van Dillen A, de Jong KP (2006) J Am Chem Soc 128:3956CrossRefGoogle Scholar
  42. 42.
    Van de Loosdrecht J, Balzhinimaev B, Dalmon JA, Niemantsverdriet J, Tsybulya SV, Saib AM, van Berge PJ, Visagie JL (2007) Catal Today 123:293CrossRefGoogle Scholar
  43. 43.
    Khodakov AY, Girardon JS, Griboval-Constant A, Lermontov AS, Chernavskii PA (2004) Stud Surf Sci Catal 147:295CrossRefGoogle Scholar
  44. 44.
    Ren TZ, Yuan ZY, Su BL (2003) Chem Phys Lett 374:170CrossRefGoogle Scholar
  45. 45.
    Mekhemer GAH (1998) Colloids Surf A 141:227CrossRefGoogle Scholar
  46. 46.
    Busca G, Lorenzelli V, Galli P, La Ginestra A, Patrono P (1987) J Chem Soc Faraday Trans 183:853Google Scholar
  47. 47.
    Salas P, Wang JA, Armendariz H, Angeles-Chavez C, Chen LF (2009) Mater Chem Phys 114:139CrossRefGoogle Scholar
  48. 48.
    Zhan Z, Zeng HC (1999) J Non-Cryst Solids 243:26CrossRefGoogle Scholar
  49. 49.
    Song D, Li J, Cai Q (2007) J Phys Chem C 111:18970CrossRefGoogle Scholar
  50. 50.
    Trobajo C, Khainakov SA, Espina A, Garcia JR (2000) Chem Mater 12:1787CrossRefGoogle Scholar
  51. 51.
    Khodakov AY, Lynch J, Bazin D, Rebours B, Zanier N, Moisson B, Chaumette P (1997) J Catal 168:16CrossRefGoogle Scholar
  52. 52.
    Schulz H, Nie Z, Ousmanov F (2002) Catal Today 71:351CrossRefGoogle Scholar
  53. 53.
    Lee YJ, Park JY, Jun KW, Bae JW, Sai Prasad PS (2009) Catal Lett 130:198CrossRefGoogle Scholar
  54. 54.
    Ponec V, van Barneveld WA (1979) Ind Eng Chem Prod Res Dev 18:268CrossRefGoogle Scholar
  55. 55.
    Rofer-DePoorter CK (1981) Chem Rev 81:447CrossRefGoogle Scholar
  56. 56.
    Ernst KH, Schwarz E, Christmann K (1994) J Chem Phys 101:5388CrossRefGoogle Scholar
  57. 57.
    Kummer JT, DeWitt TW, Emmett PH (1948) J Am Chem Soc 70:3632CrossRefGoogle Scholar
  58. 58.
    van Steen E, Schulz H (1999) Appl Catal A 186:309CrossRefGoogle Scholar
  59. 59.
    Bell AT (1980) Catal Rev Sci Eng 23:203CrossRefGoogle Scholar
  60. 60.
    Kellner CS, Bell AT (1981) J Catal 70:418CrossRefGoogle Scholar
  61. 61.
    Hovi JP, Lahtinen J, Liu ZS, Nieminen RM (1995) J Chem Phys 102:7674CrossRefGoogle Scholar
  62. 62.
    van Barneveld WAA, Ponec V (1984) J Catal 88:382CrossRefGoogle Scholar
  63. 63.
    Joyner RW (1988) Catal Lett 1:307CrossRefGoogle Scholar
  64. 64.
    Schulz H, Beck K, Erich E (1988) Fuel Process Technol 18:293CrossRefGoogle Scholar
  65. 65.
    Schulz H, van Steen E, Claeys M (1993) Selective hydrogenation and dehydrogenation. DGMK, KasselGoogle Scholar
  66. 66.
    Henrici-Olive G, Olive S (1984) The chemistry of the catalytic hydrogenation of carbon monoxide. Springer, BerlinCrossRefGoogle Scholar
  67. 67.
    Eidus YT (1967) Russ Chem Rev 36:338CrossRefGoogle Scholar
  68. 68.
    Kibby CL, Pannell RB, Kobylinski TP (1984) ACS Div Petrol Prepr 29:1113Google Scholar
  69. 69.
    Dictor RA, Bell AT (1986) J Catal 97:121CrossRefGoogle Scholar
  70. 70.
    Huff G Jr, Satterfield CN (1984) Ind Eng Chem Prod Res Dev 23:696CrossRefGoogle Scholar
  71. 71.
    van der Laan GP, Beenackers AACM (1999) Catal Rev Sci Eng 41:255CrossRefGoogle Scholar
  72. 72.
    Lox ES, Froment GF (1993) Ind Eng Chem Res 32:71CrossRefGoogle Scholar
  73. 73.
    Donnelly TJ, Satterfield CN (1989) Appl Catal 52:93CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • BalSang Lee
    • 1
  • In Hyeok Jang
    • 2
  • Jong Wook Bae
    • 2
  • Soong Ho Um
    • 2
  • Pil J. Yoo
    • 2
  • Myung-June Park
    • 1
  • Yong Chul Lee
    • 2
  • Ki-Won Jun
    • 3
  1. 1.Department of Chemical EngineeringAjou UniversitySuwonRepublic of Korea
  2. 2.School of Chemical EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
  3. 3.Petroleum Displacement Technology Research CenterKorea Research Institute of Chemical Technology (KRICT)DaejeonRepublic of Korea

Personalised recommendations