Advertisement

Catalysis Surveys from Asia

, Volume 14, Issue 3–4, pp 103–110 | Cite as

Vapor Phase Carbonylation Reactions Using Methyl Nitrite Over Pd Catalysts

  • Yasushi Yamamoto
Article

Abstract

Vapor phase carbonylation reactions using methyl nitrite (MN) as an oxidant have been developed by Ube Industries, Ltd. Dimethyl oxalate (DMO) and dimethyl carbonate (DMC) are synthesized efficiently over Pd(0) and Pd(II) catalysts under mild condition in gas phase, respectively. In these synthesis procedures, two kinds of separate reactions are involved. The first reaction is the catalytic synthesis of DMO or DMC from MN and CO; and the second reaction is non-catalytic MN synthesis from methanol, O2 and NO, which is produced from the first reaction. The high DMO or DMC selectivity and suppression of catalyst deactivation originate from the facts that O2 is not involved and H2O is not produced in the first reaction.

Keywords

Methyl nitrite Carbonylation Dimethyl oxalate Dimethyl carbonate Pd catalyst 

References

  1. 1.
    UBE U.S. Patent US 4,229,589 and US 4,229,591Google Scholar
  2. 2.
    UBE Ger.Offen DE 2,744,567Google Scholar
  3. 3.
    UBE Jpn Kokai Tokkyo Koho JP 10,095,750Google Scholar
  4. 4.
    UBE Euro. Patent EP 108,332Google Scholar
  5. 5.
    UBE U.S. Patent US 4,256,908Google Scholar
  6. 6.
    Liu KHD, Fujimoto K, Kunugi T (1991) Ind Eng Chem Prod Res Dev 16:95Google Scholar
  7. 7.
    Anderson SL, Mizushima T, Udagawa Y (1991) J Phys Chem 95:6603CrossRefGoogle Scholar
  8. 8.
    Yamamoto Y, Matsuzaki T, Ohdan K, Okamoto Y (1996) J Catal 161:577CrossRefGoogle Scholar
  9. 9.
    Manada N, Murakami M, Yamamoto Y, Kurafuji T (1994) Nippon Kagaku Kaishi 985Google Scholar
  10. 10.
    Fenton DM, Steinwand PJ (1974) J Org Chem 39:701CrossRefGoogle Scholar
  11. 11.
    Uchiumi S, Yamashita M (1982) J Jpn Petrol Inst 25:197Google Scholar
  12. 12.
    Nishihira K, Uchiumi S (1982) Kagaku to Kogyo 34:243Google Scholar
  13. 13.
    Uchiumi S, Ataka K, Matsuzaki T (1999) J Organomet Chem 576:279CrossRefGoogle Scholar
  14. 14.
    Batt L (1979) Int J Chem Kinet 11:977Google Scholar
  15. 15.
    Batt L, Islam TSA, Scot II (1978) Int J Chem Kinet 10:1195CrossRefGoogle Scholar
  16. 16.
    UBE Jpn Kokai Tokkyo Koho JP 07,069,978Google Scholar
  17. 17.
    Matsuzaki T, Nakamura A (1997) Catal Surv Jpn 1:77CrossRefGoogle Scholar
  18. 18.
    Zhao XG, Lin Q, Xiao WD (2005) Appl Catal A Gen 284:253CrossRefGoogle Scholar
  19. 19.
    Meng F, Xu G, Guo Q (2003) J Mol Catal A Chem 201:283CrossRefGoogle Scholar
  20. 20.
    Zhenghong G, Zhongchen L, Fei H, Genhui X (2005) J Mol Catal A Chem 235:143CrossRefGoogle Scholar
  21. 21.
    Waller FJ (1985) J Mol Catal 31:123CrossRefGoogle Scholar
  22. 22.
    Abrams E (1979) In: Kirk-Othmer (ed) Encyclopedia of chemical technology, 3rd edn, vol IV. Wiley, New York, p 758Google Scholar
  23. 23.
    Romano U, Tesei R, Mauri MM, Rebora P (1980) Ind Eng Chem Res Dev 19:303Google Scholar
  24. 24.
    Eni Chem. Synthesis U.S. Patent US 4,318,862Google Scholar
  25. 25.
    Curnutt GL, Harley AD (1988) In: Martel AE, Sawyer DT (eds) Oxygen complexes and oxygen activation by transition metals. Plenum Press, New York, p 21Google Scholar
  26. 26.
    Knifton JF, Duranleau RG (1991) J Mol Catal 67:389CrossRefGoogle Scholar
  27. 27.
    Kizlink J, Pastucha I (1995) Collect Czech Chem Commun 60:687CrossRefGoogle Scholar
  28. 28.
    Eni Chem. Synthesis U.S. Patent US 4,314,862Google Scholar
  29. 29.
    Matsuzaki T, Hitaka M, Tanaka S, Nishihira K (1999) Nippon Kagaku Kaishi 347Google Scholar
  30. 30.
    Zhen JX, Xua SY, Hua CS (2000) Catal Lett 69:153CrossRefGoogle Scholar
  31. 31.
    Yamamoto Y, Matsuzaki T, Tanaka S, Nishihira K, Ohdan K, Nakamura A, Okamoto Y (1997) J Chem Soc Faraday Trans 93:3721CrossRefGoogle Scholar
  32. 32.
    Angelici RJ (1972) Acc Chem Res 5:335CrossRefGoogle Scholar
  33. 33.
    Bryndza HE, Tam W (1988) Chem Rev 88:1163CrossRefGoogle Scholar
  34. 34.
    Giannoccaro P, Ravasio N, Aresta M (1993) J Organomet Chem 451:243CrossRefGoogle Scholar
  35. 35.
    Brechot P, Chuvin Y, Commereuc D, Saussine L (1991) Organometallics 9:26CrossRefGoogle Scholar
  36. 36.
    Rivetti F, Romano U (1978) J Organomet Chem 154:323CrossRefGoogle Scholar
  37. 37.
    Rivetti F, Romano U (1979) J Organomet Chem 174:221CrossRefGoogle Scholar
  38. 38.
    Homeyer ST, Karpinski Z, Sachtler WMH (1990) J Catal 123:60CrossRefGoogle Scholar
  39. 39.
    Tri TM, Candy JP, Gallezot P, Massardier J, Primet M, Vedrine JC, Imelik B (1983) J Catal 79:396CrossRefGoogle Scholar
  40. 40.
    Sachtler WM (1990) In: Vanselov R, Howe R (eds) Chemistry and physics of solid surface. Springer series in surface sciences, vol 22. Springer-Verlag, Berlin, p 69Google Scholar
  41. 41.
    Jiang HJ, Tzou MS, Sachtler WMH (1988) Catal Lett 1:99CrossRefGoogle Scholar
  42. 42.
    UBE U.S. Patent US 5,214,185 and US 5,292,917Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Organic Chemistry Research LaboratoryUbe Industries, Ltd.YamaguchiJapan

Personalised recommendations