Catalysis Surveys from Asia

, Volume 14, Issue 2, pp 64–74 | Cite as

Development of Highly Active Co(Ni)Mo Catalysts for the Hydrodesulfurization of Dibenzothiophene Compounds



Co- or Ni-promoted Mo sulfide catalysts were prepared by combining three methods, sonochemical synthesis of Mo sulfides, promoter addition by chemical vapor deposition (CVD), and fluorination of alumina support, to improve their performance in the hydrodesulfurization (HDS) process. Sonochemically synthesized Mo sulfides exhibited higher HDS activity, particularly for the hydrogenation (HYD) of dibenzothiophene (DBT) compounds, than in the case of the catalysts prepared by impregnation due to the improved dispersion of the Mo species. The addition of Co or Ni to the catalyst by a CVD method allowed the selective decoration of the Mo-sulfide surface with the promoter and accordingly produced greater amounts of the Co–Mo–S and Ni–Mo–S phases, which are known to be active sites for HDS. The performance of catalysts prepared by combining sonochemical and CVD methods was further improved by the addition of fluorine, which generated Brönsted acid sites that were responsible for the HYD route and also for the migration of methyl groups in 4,6-dimethyldibenzothiophene (4,6-DMDBT).


HDS CoMo NiMo Sonochemistry CVD Fluorine DBT 4,6-DMDBT 



This work was supported by the Brain Korea 21 project (BK 21), the National Research Laboratory program (NRL, M10318000095-04J0000-02810), and SK energy Corporation, Korea.


  1. 1.
    Knudsen K, Cooper B, Topsøe H (1999) Appl Catal A 189:205–215CrossRefGoogle Scholar
  2. 2.
    Song C, Ma X (2003) Appl Catal B 41:207–238CrossRefGoogle Scholar
  3. 3.
    Gates B, Topsøe H (1997) Polyhedron 16:3213–3217CrossRefGoogle Scholar
  4. 4.
    Kabe T, Ishihara A, Qian W (1999) Hydrodesulfurization and hydrodenitrogenation: chemistry and engineering. Kodansha Ltd., TokyoGoogle Scholar
  5. 5.
    Oyama ST (1992) Catal Today 15:179–200CrossRefGoogle Scholar
  6. 6.
    Oyama ST (2003) J Catal 216:343–352CrossRefGoogle Scholar
  7. 7.
    Oyama ST, Lee Y (2008) J Catal 258:393–400CrossRefGoogle Scholar
  8. 8.
    Wang X, Zhang M, Li W, Tao K (2008) Catal Today 131:111–117CrossRefGoogle Scholar
  9. 9.
    Turaga UT, Song C (2001) Am Chem Soc Div Pet Chem Prep 46:275–279Google Scholar
  10. 10.
    Turaga UT, Song C (2003) Catal Today 86:129–140CrossRefGoogle Scholar
  11. 11.
    Isoda T, Nagao S, Ma X, Korai Y, Mochida I (1996) Energy Fuels 10:1078–1082CrossRefGoogle Scholar
  12. 12.
    Barrera MC, Viniegra M, Escobar J, Vrinat M, de los Reyes JA, Murrieta F, Garcia J (2004) Catal Today 98:131–139CrossRefGoogle Scholar
  13. 13.
    Jirátová K, Kraus M (1986) Appl Catal 27:21–29CrossRefGoogle Scholar
  14. 14.
    Kwak C, Moon SH (1999) Korean J Chem Eng 16:608–613CrossRefGoogle Scholar
  15. 15.
    Kwak C, Kim MY, Choi K, Moon SH (1999) Appl Catal A 185:19–27CrossRefGoogle Scholar
  16. 16.
    Kwak C, Lee JJ, Bae JS, Choi K, Moon SH (2000) Appl Catal A 200:233–242CrossRefGoogle Scholar
  17. 17.
    Song CJ, Kwak C, Moon SH (2002) Catal Today 74:193–200CrossRefGoogle Scholar
  18. 18.
    Kim H, Lee JJ, Moon SH (2003) Appl Catal B 44:287–299CrossRefGoogle Scholar
  19. 19.
    Topsøe H, Clausen BS, Topsøe NY, Pedersen E (1986) Ind Eng Chem Fundam 25:25–36CrossRefGoogle Scholar
  20. 20.
    Hensen E, de Beer V, van Veen J, van Santen R (2002) Catal Lett 84:59–67CrossRefGoogle Scholar
  21. 21.
    Medici L, Prins R (1996) J Catal 163:38–49CrossRefGoogle Scholar
  22. 22.
    Cattaneo R, Weber T, Shido T, Prins R (2000) J Catal 191:225–236CrossRefGoogle Scholar
  23. 23.
    Murata S, Murata K, Kidena K, Nomura M (2004) Energy Fuel 18:116–121CrossRefGoogle Scholar
  24. 24.
    Kim JH, Ma X, Zhou A, Song C (2006) Catal Today 111:74–83CrossRefGoogle Scholar
  25. 25.
    Ohshiro T, Izumi Y (1999) Biosci Biotechnol Biochem 63:1–9CrossRefGoogle Scholar
  26. 26.
    Lee JJ, Kim H, Moon SH (2003) Appl Catal B 41:171–180CrossRefGoogle Scholar
  27. 27.
    Kim H, Lee JJ, Koh JH, Moon SH (2004) Appl Catal B 54:33–39Google Scholar
  28. 28.
    Lee JJ, Kim H, Koh JH, Jo A, Moon SH (2005) Appl Catal B 58:89–95CrossRefGoogle Scholar
  29. 29.
    Lee JJ, Kim H, Koh JH, Jo A, Moon SH (2005) Appl Catal B 61:274–280CrossRefGoogle Scholar
  30. 30.
    Cho A, Lee JJ, Koh JH, Wang A, Moon SH (2007) Green Chem 9:620–625CrossRefGoogle Scholar
  31. 31.
    Cho A, Koh JH, Wang A, Moon SH (2007) Stud Surf Sci Catal 172:469–472Google Scholar
  32. 32.
    Suslick KS, Hammerton DA, Cline RE Jr (1986) J Am Chem Soc 108:5641–5642CrossRefGoogle Scholar
  33. 33.
    Suslick KS, Hyeon T, Fang M (1996) Chem Mater 8:2172–2179CrossRefGoogle Scholar
  34. 34.
    Dhas NA, Ekhtiarzadeh A, Suslick KS (2001) J Am Chem Soc 123:8310–8316CrossRefGoogle Scholar
  35. 35.
    Vradman L, Landau MV, Herskowitz M, Ezersky V, Talianker M, Nikitenko S, Koltypin Y, Gedanken A (2003) J Catal 213:163–175CrossRefGoogle Scholar
  36. 36.
    Topsøe N, Topsøe H (1983) J Catal 84:386–401CrossRefGoogle Scholar
  37. 37.
    Topsøe H, Clausen BS (1984) Catal Rev-Sci Eng 26:395CrossRefGoogle Scholar
  38. 38.
    Okamoto Y, Ishihara S, Kawano M, Satoh M, Kubota T (2003) J Catal 217:12–22Google Scholar
  39. 39.
    Okamoto Y, Ochiai K, Kawano M, Kubota T (2004) J Catal 222:143–151CrossRefGoogle Scholar
  40. 40.
    Eijsbouts S, van den Oetelaar L, van Puijenbroek R (2005) J Catal 229:352–364CrossRefGoogle Scholar
  41. 41.
    Egorova M, Prins R (2004) J Catal 224:278–287CrossRefGoogle Scholar
  42. 42.
    Kim JH, Ma X, Song C, Lee Y, Oyama ST (2005) Energy Fuels 19:353–364CrossRefGoogle Scholar
  43. 43.
    Egorova M, Prins R (2006) J Catal 241:162–172CrossRefGoogle Scholar
  44. 44.
    Cho A, Koh JH, Lee SI, Moon SH (2010) Catal Today 149:47–51CrossRefGoogle Scholar
  45. 45.
    Breysse M, Cattenot M, Kougionas V, Lavalley JC, Mauge F, Portefaix JL, Zotin JL (1997) J Catal 168:143–153CrossRefGoogle Scholar
  46. 46.
    Cairon O, Thomas K, Chambellan A, Chevreau T (2003) Appl Catal A 238:167–183CrossRefGoogle Scholar
  47. 47.
    Kabe T, Ishihara A, Zhang Q (1993) Appl Catal A 97:L1–L9CrossRefGoogle Scholar
  48. 48.
    Lamure-Meille V, Schulz E, Lemaire M, Vrinat M (1995) Appl Catal A 131:143–157CrossRefGoogle Scholar
  49. 49.
    Isoda T, Nagao S, Ma X, Korai Y, Mochida I (1996) Energy Fuel 10:1078–1082CrossRefGoogle Scholar
  50. 50.
    Landau MV, Berger D, Herskowitz M (1996) J Catal 159:236–245CrossRefGoogle Scholar
  51. 51.
    Michaud P, Lemberton JL, Pérot G (1998) Appl Catal A 169:343–353CrossRefGoogle Scholar
  52. 52.
    Lecrenay E, Sakanishi K, Nagamatsu T, Mochida I, Suzuka T (1998) Appl Catal B 18:325–330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Chemical & Biological Engineering and Institute of Chemical ProcessesSeoul National UniversitySeoulKorea

Personalised recommendations