Catalysis Surveys from Asia

, Volume 13, Issue 1, pp 41–58 | Cite as

Multi-Walled Carbon Nanotubes as a Novel Promoter of Catalysts for CO/CO2 Hydrogenation to Alcohols

  • Hong-Bin Zhang
  • Xue-Lian Liang
  • Xin Dong
  • Hai-Yan Li
  • Guo-Dong Lin


Multi-walled carbon-nanotubes (MWCNTs) are drawing increasing attention in recent years. This material possesses a series of unique features, such as its nanometer-sized channel, highly conductive graphitized tube-wall, sp 2-C-constructed surface, and excellent performance for adsorption and spillover of hydrogen, which make the MWCNTs full of promise to be a novel catalyst support or promoter. This article will review the recent progress in applied research of MWCNTs as a novel promoter in heterogeneous catalysis for active components, including metals and their oxides, with the emphasis on the study and development of MWCNT-promoted catalysts related to CO/CO2 hydrogenation to alcohols and dimethyl ether based on the recent works carried out in our laboratory.


Multi-walled carbon nanotube-promoted catalysts Co–Cu catalysts Co–Mo–K catalysts Cu–ZrO2 catalysts Pd–ZnO catalysts Higher alcohol synthesis CO2 hydrogenation 



The authors are grateful for the financial supports from National Natural Science Foundation (No.20590364) and National Basic Research (“973”) Project (No.2005CB221403 & No.2009CB939804) of China.


  1. 1.
    Iijima S (1991) Nature 354:56–58CrossRefGoogle Scholar
  2. 2.
    Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R, Geneste P, Bernier P, Ajiayan PM (1994) J Am Chem Soc 116:7935–7936CrossRefGoogle Scholar
  3. 3.
    Serp P, Corrias M, Kalck P (2003) Appl Catal A Gen 253:337–358CrossRefGoogle Scholar
  4. 4.
    Zhang HB, Lin GD, Yuan YZ (2005) Curr Top Catal 4:1–21Google Scholar
  5. 5.
    Hoogenraad MS, Onwezen MF, van Dillen AJ, Geus JW (1996) Stud Surf Sci Catal 101:1331–1339CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Zhang H-B, Lin G-D, Chen P, Yuan Y-Z, Tsai K-R (1999) Appl Catal A Gen 187:213–224CrossRefGoogle Scholar
  7. 7.
    Luo JZ, Gao LZ, Leung YL, Au CT (2000) Catal Lett 66:91–97CrossRefGoogle Scholar
  8. 8.
    Chen H-B, Lin J-D, Cai Y, Wang X-Y, Yi J, Wang J, Wei G, Lin Y-Z, Liao D-W (2001) Appl Surf Sci 180:328–330CrossRefGoogle Scholar
  9. 9.
    van Steen E, Prinsloo FF (2002) Catal Today 71:327–334CrossRefGoogle Scholar
  10. 10.
    Zhang H-B, Dong X, Lin G-D, Yuan Y-Z, Zhang P, Tsai K-R (2003) In: Liu CJ, Mallinson RG, Aresta M (eds) Utilization of greenhouse gases, ACS symp. ser. 852. American Chemical Society, Washington, DC, pp 195–209Google Scholar
  11. 11.
    Dong X, Zhang H-B, Lin G-D, Yuan Y-Z, Tsai K-R (2003) Catal Lett 85:237–246CrossRefGoogle Scholar
  12. 12.
    Zhang H-B, Dong X, Lin G-D, Liang X-L, Li H-Y (2005) Chem Commun 40:5094–5096Google Scholar
  13. 13.
    Zhang H-B, Dong X, Lin G-D, Liang X-L, Guo Y-Y, Zhang P (2006) Preprints, 232nd ACS national meetings, Fuel Chemistry Division (San Francisco, paper no. 244 (oral presentation)Google Scholar
  14. 14.
    Dong X, Liang X-L, Li H-Y, Lin G-D, Zhang P, Zhang H-B (2009) Catal Today doi: 10.1016/j.cattod.2008.11.025
  15. 15.
    Ma X-M, Lin G-D, Zhang H-B (2006) Catal Lett 111:141–151CrossRefGoogle Scholar
  16. 16.
    Wu X-M, Guo Y-Y, Zhou J-M, Lin G-D, Dong X, Zhang H-B (2008) Appl Catal A Gen 340:87–97CrossRefGoogle Scholar
  17. 17.
    Pan X-L, Fan Z-L, Chen W, Ding Y-J, Luo H-Y, Bao X-H (2007) Nat Mater 6:507–511CrossRefGoogle Scholar
  18. 18.
    Liu Z-J, Xu Z-D, Yuan Z-Y, Lu D-Y, Chen W-X, Zhou W-Z (2001) Catal Lett 72:203–206CrossRefGoogle Scholar
  19. 19.
    Li C-B, Pan W-X, Wong W-K, Li J-L, Qiu X-Q, Chen X-P (2003) J Mol Catal A Chem 193:71–75CrossRefGoogle Scholar
  20. 20.
    Guo J, Sun G, Wang Q, Wang G, Zhou Z, Tang S, Jiang L, Zhou B, Xin Q (2006) Carbon 44:152–157CrossRefGoogle Scholar
  21. 21.
    Chianelli RR, Lyons JE, Mills GA (1994) Catal Today 22:361–396CrossRefGoogle Scholar
  22. 22.
    Smith KJ, Anderson RB (1984) J Catal 85:428–436CrossRefGoogle Scholar
  23. 23.
    Courty P, Durand D, Freund E, Sugier A (1982) J Mol Catal 17:241–254CrossRefGoogle Scholar
  24. 24.
    Razzaghi A, Hindermann JP, Kiennemann A (1984) Appl Catal 13:193–210CrossRefGoogle Scholar
  25. 25.
    Kiennemann A, Boujana S, Diagne C, Chaumette P (1993) Stud Surf Sci Catal 75:1479–1492CrossRefGoogle Scholar
  26. 26.
    Santiesteban JG, Bogdan CE, Herman RG, Klier K (1988) In: Phillips MJ, Ternan M (eds) Proceedings of 9th international congress on catalysis, vol 2. Calgary, pp 561–568Google Scholar
  27. 27.
    Herman RG (1991) Stud Surf Sci Catal 64:266–349Google Scholar
  28. 28.
    Fujimoto K, Oba T (1985) Appl Catal 13:289–293CrossRefGoogle Scholar
  29. 29.
    Inoue M, Miyake T, Takegami Y, Inui T (1987) Appl Catal 29:285–294CrossRefGoogle Scholar
  30. 30.
    Tatsumi T, Muramatsu A, Fukunaga T, Tominaga H (1988) In: Phillips MJ, Ternan M (eds) Proceedings of 9th international congress on catalysis, vol 2. Calgary, pp 618–625Google Scholar
  31. 31.
    Sun ZH, Bao J, Fu YL, Bian GZ (2003) Chin J Catal 24:826–830Google Scholar
  32. 32.
    Forzatti P, Tronconi E, Pasquon I (1991) Catal Rev-Sci Eng 33:109–168CrossRefGoogle Scholar
  33. 33.
    Stiles AB, Chen F, Harrison JB, Hu X, Storm DA, Yang HX (1991) Ind Eng Chem Res 30:811–821CrossRefGoogle Scholar
  34. 34.
    Slaa JC, van Ommen JG, Ross JRH (1992) Catal Today 15:129–148CrossRefGoogle Scholar
  35. 35.
    Chen P, Zhang HB, Lin GD, Hong Q, Tsai KR (1997) Carbon 35:1495–1501CrossRefGoogle Scholar
  36. 36.
    Chen P, Zhang HB, Lin GD, Tsai KR (1998) Chem J Chinese Univ 19(5):765–769Google Scholar
  37. 37.
    Zhang H-B, Lin G-D, Zhou Z-H, Dong X, Chen T (2002) Carbon 40(13):2429–2436CrossRefGoogle Scholar
  38. 38.
    Wu X-M, Guo Y-Y, Li H, Lin G-D, Zhang H-B (2007) J Xiamen Univ (Nat Sci) 46:445–450Google Scholar
  39. 39.
    Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu XD, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956–3964CrossRefGoogle Scholar
  40. 40.
    Saito M, Fujitani T, Takeuchi M, Watanabe T (1996) Appl Catal A Gen 138:311–318CrossRefGoogle Scholar
  41. 41.
    Cong Y, Tin KC, Wang NB, Xu C, Zhang T, Sun X, Guan W, Liang D (2000) Chin J Catal 21:247–250Google Scholar
  42. 42.
    Amenomiya Y, Emesh AIT, Oliver KW, Pleizier G (1988) In: Phillips MJ, Ternan M (eds) Proceedings of 9th international congress on catalysis, vol 2. Calgary, pp 634–641Google Scholar
  43. 43.
    Pommier B, Teichner SJ (1988) In: Phillips MJ, Ternan M (eds) Proceedings of 9th international congress on catalysis, vol 2. Calgary, pp 610–617Google Scholar
  44. 44.
    Koppel RA, Baiker A, Schild C, Wokaun A (1991) Stud Surf Sci Catal 63:59–68CrossRefGoogle Scholar
  45. 45.
    Koeppel RA, Baiker A, Wokaun A (1992) Appl Catal A Gen 84:77–102CrossRefGoogle Scholar
  46. 46.
    Kilo M, Weigel J, Wokaun A, Koeppel RA, Stoeckli A, Baiker A (1997) J Mol Catal A Chem 126:169–184CrossRefGoogle Scholar
  47. 47.
    Koeppel RA, Stocker C, Baiker A (1998) J Catal 79:515–527CrossRefGoogle Scholar
  48. 48.
    Liu J, Shi J, He D, Zhang Q, Wu X, Liang Y, Zhu Q (2001) Appl Catal A Gen 218:113–119CrossRefGoogle Scholar
  49. 49.
    Fan L, Fujimoto K (1994) J Catal 150:217–220CrossRefGoogle Scholar
  50. 50.
    Fujitani T, Saito M, Kanai Y, Watanabe T, Nakamura J, Uchijima T (1995) Appl Catal A Gen 125:L199–L202CrossRefGoogle Scholar
  51. 51.
    Fan L, Fujimoto K (1997) J Catal 172:238–242CrossRefGoogle Scholar
  52. 52.
    Iwasa N, Suzuki H, Terashita M, Arai M, Takezawa N (2004) Catal Lett 96:75–78CrossRefGoogle Scholar
  53. 53.
    Li H, Ma C-H, Lin G-D, Zhang H-B (2008) J Xiamen Univ (Nat Sci Ed) 47:765–771Google Scholar
  54. 54.
    Liang X-L, Li H, Lin G-D, Zhang H-B (2008) Chem Ind Eng Progress 27 (Sup) 273–276Google Scholar
  55. 55.
    Liang X-L, Lin G-D, Zhang H-B (2009) Appl Catal B Environ doi: 10.1016/j.apcatb.2008.11.018
  56. 56.
    Zhang H-B, Zhang Y, Lin G-D, Yuan Y-Z, Tsai KR (2000) Stud Surf Sci Catal 130, Proceedings of 12th ICC, pp 3885–3890Google Scholar
  57. 57.
    Zhou J-M, Wand Y, Tang P-P, Wu X-M, Lin G-D, Zhang H-B (2005) Chin J Appl Chem 22:117–122Google Scholar
  58. 58.
    Zhou Z-H, Wu X-M, Wang Y, Lin LinG-D, Zhang H-B (2002) Acta Phys Chim Sin 18:692–698Google Scholar
  59. 59.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy—a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics Inc., Eden PrairieGoogle Scholar
  60. 60.
    Abart J, Delgado E, Ertl G, Jeziorowshi H, Knözinger H, Thiele N, Wang XZ, Taglauer E (1982) Appl Catal 2:155–176CrossRefGoogle Scholar
  61. 61.
    Venezia AM (2003) Catal Today 77:359–370CrossRefGoogle Scholar
  62. 62.
    Muramatsu A, Tatsumi T, Tominaga H (1992) J Phys Chem 96:1334–1340CrossRefGoogle Scholar
  63. 63.
    Saito M, Anderson RB (1980) J Catal 63:438–446CrossRefGoogle Scholar
  64. 64.
    Klier K (1982) Adv Catal 31:243–313CrossRefGoogle Scholar
  65. 65.
    Ishikawa Y, Austin LG, Brown DE, Walker PL Jr (1975) In: Walker PL Jr, Thrower PA (eds) Chemistry and physics of carbon. American Carbon Society, Marcel Dekker, p 39Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hong-Bin Zhang
    • 1
  • Xue-Lian Liang
    • 1
  • Xin Dong
    • 1
  • Hai-Yan Li
    • 1
  • Guo-Dong Lin
    • 1
  1. 1.College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry for Solid Surfaces and National Engineering Laboratory for Green Chemical Productions of Alcohols–Ethers–EstersXiamen UniversityXiamenChina

Personalised recommendations