Catalysis Surveys from Asia

, Volume 12, Issue 4, pp 283–309 | Cite as

Synthesis, Characterization and Catalytic Activity of Sn-SBA-15 Mesoporous Molecular Sieves

  • Veda Ramaswamy
  • Pallavi Shah
  • Karoly Lazar
  • A. V. Ramaswamy


Our recent reports on the synthesis of Sn-incorporated mesoporous SBA-15 materials have been reviewed. The preparation of the samples with different Si/Sn ratios followed two procedures, the first is the post-synthesis modification of SBA-15 by impregnation with Sn chloride or acetate, and the second is the direct method in which Sn chloride was introduced in to Si precursor along with amphiphilic triblock copolymer, while varying the \( n_{{{\text{H}}_{ 2} {\text{O}}}} /n_{\text{HCl}} \) ratio of the synthesis gel. Detailed characterization of the Sn-SBA-15 samples by a variety of techniques shows how the synthesis procedures influence the properties of the samples that reflect on the differences in (a) the structural features, (b) morphology and textural properties, such as the pore characteristics, (c) the possible location of Sn4+ ions in the meso silica structure and their reducibility, (d) the nature of the Sn species and their the coordination sphere and (e) the acid–base characteristics. We developed a possible model for the localization of Sn species in SBA-15 pore structure for different conditions of preparation. This report includes our investigations on the catalytic properties of these Sn-SBA-15 samples in 3 industrially important reactions, viz., trans-esterification of diethyl malonate, synthesis of nopol by Prins condensation of β-pinene with para-formaldehyde and the epoxidation of norbornene. In each of this reaction, while demonstrating the catalytic role of Sn species, we show that the requirement of the type and the environment of Sn species are different for these reactions.


Mesoporous materials Sn-containing SBA-15 Synthesis of Sn-SBA-15 Sn-SBA-15 catalysts Properties of Sn-SBA-15 


  1. 1.
    Mal NK, Ramaswamy AV (1996) J Mol Catal A Chem 105:149CrossRefGoogle Scholar
  2. 2.
    Mal NK, Ramaswamy AV (1997) Chem Commun 425Google Scholar
  3. 3.
    Corma A, Nemeth LT, Renz M, Valencia S (2001) Nature (London) 412:423CrossRefGoogle Scholar
  4. 4.
    Li G, Kawi S (1999) Sens Actuators B Chem 59:1CrossRefGoogle Scholar
  5. 5.
    Ryoo R, Jun S, Kim JM, Kim MJ (1997) Chem Commun 2225Google Scholar
  6. 6.
    Corma A, Navarro MT, Nemeth L, Renz M (2001) Chem Commun 24:2190CrossRefGoogle Scholar
  7. 7.
    Corma A, Navarro MT, Renz M (2003) J Catal 219:242CrossRefGoogle Scholar
  8. 8.
    Teraoka Y, Ishida S, Yamasaki A, Tomonaga N, Yasutake A, Izumi J, Moriguchi I, Kagawa S (2001) Microporous Mesoporous Mater 48:151CrossRefGoogle Scholar
  9. 9.
    Wang X, Xu H, Fu X, Liu P, Lefebure F, Basset J-M (2005) J Mol Catal A Chem 238:185CrossRefGoogle Scholar
  10. 10.
    Choudhary K, Das TK, Rajmohanan PR, Lazar K, Sivasanker S, Chandwadkar AJ (1999) J Catal 183:281CrossRefGoogle Scholar
  11. 11.
    Shah P, Ramaswamy AV, Lazar K, Ramaswamy V (2004) Appl Catal A General 273:239CrossRefGoogle Scholar
  12. 12.
    Shah P, Ramaswamy AV, Pasricha R, Lazar K, Ramaswamy V (2004) Stud Surf Sci Catal 154A:870CrossRefGoogle Scholar
  13. 13.
    Vinu A, Murugesan V, Böhlmann W, Hartmann M (2004) J Phys Chem B 108:11496CrossRefGoogle Scholar
  14. 14.
    Vinu A, Murugesan V (2004) Chem Lett 33:588CrossRefGoogle Scholar
  15. 15.
    Cui X, Zin WC, Cho WJ, Ha CS (2005) Mater Lett 59:2257CrossRefGoogle Scholar
  16. 16.
    Li Y, Feng Z, Lian Y, Sun K, Zhang L, Jia G, Yang Q, Li C (2005) Microporous Mesoporous Mater 84:41CrossRefGoogle Scholar
  17. 17.
    Shah P, Ramaswamy AV, Lazar K, Ramaswamy V (2006) Chem Lett 35:860CrossRefGoogle Scholar
  18. 18.
    Shah P, Ramaswamy AV, Lazar K, Ramaswamy V (2007) Microporous Mesoporous Mater 100:209Google Scholar
  19. 19.
    Beaz G (1991) In comprehensive organic synthesis. In: Trost BM, Fleming I (eds) Pergamon, Oxford, vol 6, p 323Google Scholar
  20. 20.
    Bertin J, Kagan HB, Luche JL, Setton R (1974) J Am Chem Soc 96:8113CrossRefGoogle Scholar
  21. 21.
    Otera J (1993) Chem Rev 93:1449CrossRefGoogle Scholar
  22. 22.
    Rehn D, Ugi I (1977) J Chem Res Synop 119Google Scholar
  23. 23.
    Banerjee A, Senugupta S, Adak MM, Banerjee GC (1983) J Org Chem 48:3106CrossRefGoogle Scholar
  24. 24.
    Banerjee A, Adak MM, Das S, Banerjee S, Senugupta S (1987) J Indian Chem Soc 64:34Google Scholar
  25. 25.
    Ram RN, Charles I (1997) Tetrahedron 53:7335CrossRefGoogle Scholar
  26. 26.
    Rodriguez A, Nomen M, Spur BW, Godfroid JJ (1998) Tetrahedron Lett 39:8563CrossRefGoogle Scholar
  27. 27.
    Breton GW (1997) J Org Chem 62:8952CrossRefGoogle Scholar
  28. 28.
    Olah GA, Keumi T, Meidar D (1978) Synthesis 929Google Scholar
  29. 29.
    Saroja M, Kaimal TNB (1986) Synth Commun 16:1423CrossRefGoogle Scholar
  30. 30.
    Wakasugi K, Misaki T, Yamada K, Tanabe Y (2000) Tetrahedron Lett 41:5249CrossRefGoogle Scholar
  31. 31.
    Ranu BC, Dutta P, Sarkar A (1998) J Org Chem 63:6027CrossRefGoogle Scholar
  32. 32.
    Ponde DE, Deshpande VH, Bulbule VJ, Sudalai A, Gajare AS (1998) J Org Chem 63:1058CrossRefGoogle Scholar
  33. 33.
    Olah GA, Narang SC, Saleom GF, Balaram Gupta BG (1981) Synthesis 142Google Scholar
  34. 34.
    Chavan SP, Zubaidha PK, Dantale SW, Keshavaraja A, Ramaswamy AV, Ravindranathan T (1996) Tetrahedron Lett 37, pp 233–237Google Scholar
  35. 35.
    Bauer K, Garbe D, Surburg H (1997) Common fragrance and flavor materials: preparation properties and uses. Wiley, New YorkGoogle Scholar
  36. 36.
    Kirk-Othmer Encyclopedia of Chemical Technology (1997) vol 26. Wiley, New YorkGoogle Scholar
  37. 37.
    Villa de P AL, Alarcón E, Montes de Correa C (2002) Chem Commun 2654Google Scholar
  38. 38.
    Villa de P AL, Alarcón E, Montes de Correa C (2005) Catal Today 107–108:942CrossRefGoogle Scholar
  39. 39.
    Pillai UR, Sahle-Demessie E (2004) Chem Commun 826Google Scholar
  40. 40.
    Jyothi TM, Kaliya ML, Herskowitz M, Landau MV (2001) Chem Commun 992Google Scholar
  41. 41.
    Jyothi TM, Kaliya ML, Landau MV, Miron V (2001) Angew Chem (Int Ed) 40:2881CrossRefGoogle Scholar
  42. 42.
    Wattimena F, Wulff HP (1971) British Patent 1,249,079 (to Shell)Google Scholar
  43. 43.
    Notari B (1996) Adv Catal 41:253CrossRefGoogle Scholar
  44. 44.
    Imamura S, Sasaki H, Shono M, Kanai H (1998) J Catal 177:72CrossRefGoogle Scholar
  45. 45.
    Kumar P, Kumar R, Pandey B (1995) Synlett 289Google Scholar
  46. 46.
    Joseph R, Sasidharan M, Kumar R, Sudalai A, Ravindranathan T (1995) J Chem Soc Chem Commun 1341Google Scholar
  47. 47.
    Camblor MA, Corma A, Martinez A, Perez-Pariente J (1992) J Chem Soc Chem Commun 589Google Scholar
  48. 48.
    Tanev PT, Chibwe M, Pinnavaia TJ (1994) Nature 368:321CrossRefGoogle Scholar
  49. 49.
    Cativiela C, Figueras F, Fraile JM, Garcìa JI, Mayoral JA (1995) Tetrahedron Lett 36:4125CrossRefGoogle Scholar
  50. 50.
    Brunner H, Stumpf A (1994) Monatsh Chem (Wiener) 125:485CrossRefGoogle Scholar
  51. 51.
    Yokoyama T, Nishizawa M, Kimura T, Suzuki TM (1983) Chem Lett 1703Google Scholar
  52. 52.
    Arends IWCE, Birelli MP, Sheldon RA (1997) Stud Surf Sci Catal 110:1031CrossRefGoogle Scholar
  53. 53.
    Zhao D, Feng J, Huo Q, Molish N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548CrossRefGoogle Scholar
  54. 54.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024CrossRefGoogle Scholar
  55. 55.
    Morey M, Davidson A, Eckert H, Stucky GD (1996) Chem Mater 8:486CrossRefGoogle Scholar
  56. 56.
    Bhambhani MR, Cutting PA, Sing KSW, Turk DH (1972) J Colloid Interface Sci 38:109CrossRefGoogle Scholar
  57. 57.
    Boccuti M, Rao KM, Zecchina A, Leofanti G, Petrini G (1989) In: Morterra C, Zecchina A, Costa G (eds) Structure and reactivity of surfaces. Elsevier, Amsterdam, p 133CrossRefGoogle Scholar
  58. 58.
    Camblor MA, Corma A, Perez-Pariente J (1993) J Chem Soc Chem Commun 557Google Scholar
  59. 59.
    Gabelica Z, Juth JL (1989) Stud Surf Sci Catal 49 A 421Google Scholar
  60. 60.
    Sebald A, Merwin LH, Dollase WA, Seifert F (1990) Phys Chem Min 17:9CrossRefGoogle Scholar
  61. 61.
    Clayden NJ, Dobson CM, Fern A (1989) J Chem Soc Dalton Trans 843Google Scholar
  62. 62.
    Lázár K, Szeleczky AM, Mal NK, Ramaswamy AV (1997) Zeolites 19:123CrossRefGoogle Scholar
  63. 63.
    Alexandridis P, Olsson U, Lindmann B (1998) Langmuir 14:2627CrossRefGoogle Scholar
  64. 64.
    Imperor-Clerc M, Davidson P, Davidson A (2000) J Am Chem Soc 122:11925CrossRefGoogle Scholar
  65. 65.
    Ryoo R, Ko CH (2000) J Phys Chem B 104:11465CrossRefGoogle Scholar
  66. 66.
    Perathoner S, Lanzafame P, Passalacqua R, Centi G, Schlögl R, Su DS (2006) Microporous Mesoporous Mater 90:347CrossRefGoogle Scholar
  67. 67.
    Melosh NA, Lipic P, Bates FS, Wudel F, Stucky GD, Fredrickson GH, Chmelka BF (1999) Macromolecules 32:4332CrossRefGoogle Scholar
  68. 68.
    Sauer J, Marlow F, Schüth F (2001) Phys Chem Chem Phys 3:367CrossRefGoogle Scholar
  69. 69.
    Janssen AH, Yang CM, Wang Y, Schüth F, Koster AJ, De Jong KP (2003) J Phys Chem B 107:10552CrossRefGoogle Scholar
  70. 70.
    Parmentier J, Saadhallah S, Reda M, Gibot P, Roux M, Vidal L, Vix-Guterl C, Patarin J (2004) J Phys Chem Solids 65:139CrossRefGoogle Scholar
  71. 71.
    Vradman L, Landau MV, Kantorovich D, Koltypin Y, Gedanken A (2005) Microporous Mesoporous Mater 79:307CrossRefGoogle Scholar
  72. 72.
    Zhang W-H, Lu J, Han B, Li M, Xiu J, Ying P, Li C (2002) Chem Mater 14:3413CrossRefGoogle Scholar
  73. 73.
    Hicks JC, Jones CW (2006) Langmuir 22:2676CrossRefGoogle Scholar
  74. 74.
    Lázár K, Chandwadkar AJ, Fejes P, Cejka J, Ramaswamy AV (2000) J Radioanal Nucl Chem 246:143CrossRefGoogle Scholar
  75. 75.
    Lettow JS, Han YJ, Schmidt-Winkel P, Yang P, Zhao D, Stucky GD, Ying JY (2000) Langmuir 16:8291CrossRefGoogle Scholar
  76. 76.
    Galarneau A, Cambon H, Renzo FD, Fajula F (2001) Langmuir 17:8328CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Chemical Physics LaboratoryCentral Leather Research InstituteChennaiIndia
  2. 2.Catalysis DivisionNational Chemical LaboratoryPuneIndia
  3. 3.Institute of Isotopes, HASBudapestHungary
  4. 4.National Centre for Catalysis ResearchIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations