Skip to main content
Log in

Highly Dispersed Ce x Zr1−x O2 Nano-Oxides Over Alumina, Silica and Titania Supports for Catalytic Applications

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

We have been exploring the utilization of supported ceria and ceria–zirconia nano-oxides for different catalytic applications. In this comprehensive investigation, a series of Ce x Zr1−x O2/Al2O3, Ce x Zr1−x O2/SiO2 and Ce x Zr1−x O2/TiO2 composite oxide catalysts were synthesized and subjected to thermal treatments from 773 to 1073 K to examine the influence of support on thermal stability, textural properties and catalytic activity of the ceria–zirconia solid solutions. The physicochemical characterization studies were performed using X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HREM), thermogravimetry and BET surface area methods. To evaluate the catalytic properties, oxygen storage/release capacity (OSC) and CO oxidation activity measurements were carried out. The XRD analyses revealed the formation of Ce0.75Zr0.25O2, Ce0.6Zr0.4O2, Ce0.16Zr0.84O2 and Ce0.5Zr0.5O2 phases depending on the nature of support and calcination temperature employed. Raman spectroscopy measurements in corroboration with XRD results suggested enrichment of zirconium in the Ce x Zr1−x O2 solid solutions with increasing calcination temperature thereby resulting in the formation of oxygen vacancies, lattice defects and oxygen ion displacement from the ideal cubic lattice positions. The HREM results indicated a well-dispersed cubic Ce x Zr1−x O2 phase of the size around 5 nm over all supports at 773 K and there was no appreciable increase in the size after treatment at 1073 K. The XPS studies revealed the presence of cerium in both Ce4+ and Ce3+ oxidation states in different proportions depending on the nature of support and the treatment temperature applied. All characterization techniques indicated absence of pure ZrO2 and crystalline inactive phases between Ce–Al, Ce–Si and Ce–Ti oxides. Among the three supports employed, silica was found to stabilize more effectively the nanosized Ce x Zr1−x O2 oxides by retarding the sintering phenomenon during high temperature treatments, followed by alumina and titania. Interestingly, the alumina supported samples exhibited highest OSC and CO oxidation activity followed by titania and silica. Details of these findings are consolidated in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Trovarelli A (2002) In: Hutchings GJ (ed) Catalysis by ceria, related materials, vol 2. Catalytic science series. Imperial College Press, London

    Google Scholar 

  2. Trovarelli A (1996) Catal Rev Sci Eng 38:439

    Article  CAS  Google Scholar 

  3. Garcia MF, Arias AM, Hanson JC, Rodriguez JA (2004) Chem Rev 104:4063

    Article  Google Scholar 

  4. Reddy BM, Khan A (2005) Catal Surv Asia 9:155

    Article  CAS  Google Scholar 

  5. Reddy BM, Bharali P, Saikia P, Khan A, Loridant S, Muhler M, Grünert W (2007) J Phys Chem C 111:1878

    Article  CAS  Google Scholar 

  6. Reddy BM, Lakshmanan P, Bharali P, Saikia P, Thrimurthulu G, Muhler M, Grünert W (2007) J Phys Chem C 111:10478

    Article  CAS  Google Scholar 

  7. Klabunde K (2001) Nanoscale materials in chemistry. Wiley-Interscience, New York

    Google Scholar 

  8. Natile MM, Boccaletti G, Glisenti A (2005) Chem Mater 17:6272

    Article  CAS  Google Scholar 

  9. Reddy BM (2006) In: Fierro JLG (ed) Metal oxides: chemistry and applications, Ch 8. CRC Press, Florida, p 215

    Google Scholar 

  10. Trovarelli A, de Leitenburg C, Dolcetti G (1997) Chemtech 27:32

    CAS  Google Scholar 

  11. Fu Q, Saltsburg H, Stephanopoulos MF (2003) Science 301:935

    Article  CAS  Google Scholar 

  12. Park S, Vohs JM, Gorte RJ (2000) Nature 404:265

    Article  CAS  Google Scholar 

  13. Deluga GA, Salge SR, Schmidt LD, Verykios XE (2004) Science 303:993

    Article  CAS  Google Scholar 

  14. Bocanegra-Bernal MH, de la Torre SD (2002) J Mater Sci 37:4947

    Article  CAS  Google Scholar 

  15. Steele BCH (1999) Nature 400:619

    Article  CAS  Google Scholar 

  16. Ralph JM, Schoeler AC, Krumpelt M (2001) J Mater Sci 36:1161

    Article  CAS  Google Scholar 

  17. Steele BCH, Heinzel A (2001) Nature 414:345

    Article  CAS  Google Scholar 

  18. Maskell WC (2000) Solid State Ionics 134:43

    Article  CAS  Google Scholar 

  19. Lee JH (2003) J Mater Sci 38:4247

    Article  CAS  Google Scholar 

  20. Jurado JR (2001) J Mater Sci 36:1133

    Article  CAS  Google Scholar 

  21. Shalliker RA, Douglas GK (1998) J Liq Chromatogr Relat Technol 21:2413

    Article  CAS  Google Scholar 

  22. Li RX, Yabe S, Yamashita M, Momose S, Yoshida S, Yin S, Sato T (2002) Mater Chem Phys 75:39

    Article  CAS  Google Scholar 

  23. Piconi C, Maccauro G (1999) Biomaterials 20:1

    Article  CAS  Google Scholar 

  24. Shinjoh H (2006) J Alloys Compd 408–412:1061

    Article  Google Scholar 

  25. Masui T, Ozaki T, Machida K, Adachi G (2000) J Alloys Compd 303–304:49

    Article  Google Scholar 

  26. Monte RD, Kaspar J (2005) J Mater Chem 15:633

    Article  Google Scholar 

  27. Gandhi HS, Graham GW, McCabe RW (2003) J Catal 216:433

    Article  CAS  Google Scholar 

  28. Cowley A (1999) Platinum 2004. Johnson Matthey, London

    Google Scholar 

  29. Kim CH, Woo SI, Jeon SH (2000) Ind Eng Chem Res 39:1185

    Article  CAS  Google Scholar 

  30. Stark WJ, Grunwaldt J, Maciejewski M, Pratsinis SE, Baiker A (2005) Chem Mater 17:3352

    Article  CAS  Google Scholar 

  31. Deganello F, Martorana A (2002) J Solid State Chem 163:527

    Article  CAS  Google Scholar 

  32. Ozawa M, Kimura M, Isogai A (1993) J Alloys Compd 193:73

    Article  CAS  Google Scholar 

  33. Cuif JP, Blanchard G, Touret O, Marczi M, Quéméré E (1996) SAE Technical Paper 96:1906 (Rhone-Poulenc)

  34. Rohart E, Larcher O, Deutsch S, Hedouin C, Aimin H, Fajardie F, Allain M, Macaudiere P (2004) Topics Catal 30–31:417

    Article  Google Scholar 

  35. Tanabe T, Suda A, Descorme C, Duprez D, Shinjoh H, Sugiura M (2001) Stud Surf Sci 138:135

    Article  CAS  Google Scholar 

  36. Koermer GS, Hratko L (2003) USP No. 6,548,446 and references therein

  37. Kaspar J, Fornasiero P (2003) J Solid State Chem 171:19

    Article  CAS  Google Scholar 

  38. Bozo C, Gaillard F, Guilhaume N (2001) Appl Catal A: Gen 220:69

    Article  CAS  Google Scholar 

  39. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) Langmuir 19:3025

    Article  CAS  Google Scholar 

  40. Si R, Zhang Y-W, Li S-J, Lin B-X, Yan C-H (2004) J Phys Chem B 108:12481

    Article  CAS  Google Scholar 

  41. Terribile D, Trovarelli A, Llorca J, de Leitenburg C, Dolcetti G (1998) Catal Today 43:79

    Article  CAS  Google Scholar 

  42. Yao MH, Baird RJ, Kunz FW, Hoost TE (1997) J Catal 166:67

    Article  CAS  Google Scholar 

  43. Monte RD, Fornasiero P, Kaspar J, Graziani M, Gatica JM, Bernal S, Herrero AG (2000) Chem Commun 2167

  44. Corma A, Atienzar P, Garcia H, Chane-Ching J (2004) Nature Mater 3:394

    Article  CAS  Google Scholar 

  45. Monte RD, Fornasiero P, Desinan S, Kaspar J, Gatica JM, Calvino JJ, Fonda E (2004) Chem Mater 16:4273

    Article  Google Scholar 

  46. Kenevey K, Valdivieso F, Soustelle M, Pijolat M (2001) Appl Catal B: Environ 2:93

    Article  Google Scholar 

  47. Fornasiero P, Balducci G, Monte RD, Kaspar J, Sergo V, Gubitosa G, Ferrero A, Graziani M (1996) J Catal 164:173

    Article  CAS  Google Scholar 

  48. Kozlov AI, Kim DH, Yezerets A, Andersen P, Kung HH, Kung MC (2002) J Catal 209:417

    Article  CAS  Google Scholar 

  49. Reddy BM, Lakshmanan P, Khan A, Loridant S, Cartes CL, Rojas TC, Fernández A (2005) J Phys Chem B 109:13545

    Article  CAS  Google Scholar 

  50. Rocchini E, Trovarelli A, Liorca J, Graham GW, Weber WH, Maciejewski M, Baiker A (2000) J Catal 194:461

    Article  CAS  Google Scholar 

  51. Kucharczyk B, Tylus W, Kepinski L (2004) Appl Catal B: Environ 49:27

    Article  CAS  Google Scholar 

  52. Reddy BM, Lakshmanan P, Khan A, Cartes CL, Rojas TC, Fernández A (2005) J Phys Chem B 109:1781

    Article  CAS  Google Scholar 

  53. Preuss A, Gruehn R (1994) J Solid State Chem 110:363

    Article  CAS  Google Scholar 

  54. Reddy BM, Manohar B, Mehdi S (1992) J Solid State Chem 97:233

    Article  CAS  Google Scholar 

  55. Bond GC, Tahir SF (1991) Appl Catal 71:1

    Article  CAS  Google Scholar 

  56. Hadjiivanov KI, Klissurski DG (1996) Chem Soc Rev 25:61

    Article  CAS  Google Scholar 

  57. Lin J, Yu JC (1998) J Photochem Photobiol A: Chem 116:63

    Article  CAS  Google Scholar 

  58. Anderson C, Bard AJ (1994) J Phys Chem 98:1769

    Google Scholar 

  59. Colon G, Pijolat M, Valdivieso F, Vidal H, Kaspar J, Finocchio E, Daturi M, Binet C, Lavalley JC, Baker RT, Bernal S (1998) J Chem Soc, Faraday Trans 94:3717

    Article  CAS  Google Scholar 

  60. Weckhuysen BM, Schoonheydt RA (1999) Catal Today 49:441

    Article  CAS  Google Scholar 

  61. Gao X, Wachs IE (2000) J Phys Chem B 104:1261

    Article  CAS  Google Scholar 

  62. Shannon RD (1976) Acta Crystallogr A 32:751

    Article  Google Scholar 

  63. Meriani S, Spinolo G (1987) Powder Diffract 2:255

    CAS  Google Scholar 

  64. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley, Reading, MA

    Google Scholar 

  65. Ingel RP, Lewis P, Bender BA, Rice RW (1984) Adv Ceram 12:408

    CAS  Google Scholar 

  66. Escribano VS, Lopez EF, Panizza M, Resini C, Amores JMG, Busca G (2003) Solid State Sci 5:1369

    Article  Google Scholar 

  67. Lin L-M, Li L-P, Li G-S, Su W-H (2001) Mater Chem Phys 69:236

    Article  CAS  Google Scholar 

  68. Yashima M, Arashi H, Kakihana M, Yoshimura M (1994) J Am Ceram Soc 77:1067

    Article  CAS  Google Scholar 

  69. Spanier JE, Robinson RD, Zhang F, Chan SW, Herman IP (2001) Phys Rev B 64:245407

    Article  Google Scholar 

  70. Weber WH, Hass KC, McBride JR (1993) Phys Rev B 48:178

    Article  CAS  Google Scholar 

  71. McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435

    Article  CAS  Google Scholar 

  72. Wachs IE, Hardcastle FD, Chan SS (1986) Spectroscopy 1:30

    CAS  Google Scholar 

  73. Kosmulski M (2002) Adv Colloid Interf Sci 99:255

    Article  CAS  Google Scholar 

  74. Wagner CD, Riggs WM, Davis LE, Moulder JF (1978) In: Muilenberg GE (ed) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie, MN

    Google Scholar 

  75. Briggs D, Seah MP (1990) Auger and X- ray photoelectron spectroscopy, practical surface analysis, vol 1, 2nd edn. Wiley, New York

    Google Scholar 

  76. Sawatzky GA, Post D (1979) Phys Rev B 20:1546

    Article  CAS  Google Scholar 

  77. Bensalem A, Verduraz FB, Delamar M, Bugli G (1995) Appl Catal A: Gen 121:81

    Article  CAS  Google Scholar 

  78. Burroughs A, Hamnett A, Orchard AF, Thornton G (1976) J Chem Soc, Dalton Trans 1:1686

    Article  Google Scholar 

  79. Noronha FB, Fendley EC, Soares RR, Alvarez WE, Resasco DE (2001) Chem Eng J 82:21

    Article  CAS  Google Scholar 

  80. Albero JS, Reinoso FR, Escribano AS (2002) J Catal 210:127

    Article  Google Scholar 

  81. Daturi M, Binet C, Lavalley J, Galtayries A, Sporken R (1999) Phys Chem Chem Phys 1:5717

    Article  CAS  Google Scholar 

  82. Wong PC, Li YS, Mitchell KAR (1995) Surf Rev Lett 2:297

    Article  CAS  Google Scholar 

  83. Reddy BM, Chowdhury B, Reddy EP, Fernández A (2001) Appl Catal A: Gen 213:279

    Article  CAS  Google Scholar 

  84. Galtayries A, Crucifix M, Blanchard G, Terwagne G, Sporken R (1999) Appl Surf Sci 142:159

    Article  CAS  Google Scholar 

  85. Nagata H, Yoshimoto M, Tsukahara T, Gonda S, Koinuma H (1991) Mater Res Soc Symp Proc 202:445

    CAS  Google Scholar 

  86. Inoue T, Yamamoto Y, Satoh M, Ide A, Katsumata S (1996) Thin Solid Films 281:24

    Article  Google Scholar 

  87. Sanchez F, Varela M, Ferrater C, Cuenca MVG, Aguiar R, Morenza JL (1993) Appl Surf Sci 70:94

    Article  Google Scholar 

  88. Behner H, Wecker J, Mathee T, Samwer K (1992) Surf Interf Anal 18:685

    Article  CAS  Google Scholar 

  89. Beiner J, Baumer M, Wang J, Madrix RJ (2000) Surf Sci 450:12

    Article  Google Scholar 

  90. Wang Q, Madrix RJ (2001) Surf Sci 474:L213

    Article  CAS  Google Scholar 

  91. Colon G, Valdivieso F, Pijolat M, Baker RT, Calvino JJ, Bernal S (1999) Catal Today 50:271

    Article  CAS  Google Scholar 

  92. Bernal S, Baker RT, Burrows A, Kiely CJC, Cartes CL, Perez-Omil JA, Izquierdo JMR (2000) Surf Interf Anal 29:411

    Article  CAS  Google Scholar 

  93. Bernal S, Calvino JJ, Cauqui MA, Gatica JM, Cartes CL, Perez-Omil JA, Pintado JM (2003) Catal Today 77:385

    Article  CAS  Google Scholar 

  94. Ozawa M, Loong CK (1999) Catal Today 50:329

    Article  CAS  Google Scholar 

  95. Aneggi E, Boaro M, de Leitenburg C, Dolcetti G, Trovarelli A (2006) J Alloys Compd 408–412:1096

    Article  Google Scholar 

  96. Assmann J, Narkhede V, Khodeir L, Loffler E, Hinrichsen O, Birkner A, Over H, Muhler M (2004) J Phys Chem B 108:14634

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. S. Loridant, IRCE-Lyon, France, Dr. Y. Yamada, AIST-Kansai, Japan, Dr. A. Fernández, CSIC-UNSE-Sevilla, Spain, and Prof. Dr. W. Grünert, RU-Bochum, Germany for providing Raman, XPS, HREM, and CO activity results, respectively. P.S. and P.B. thank CSIR, New Delhi, for the award of Research Fellowships. Financial support received from DST, New Delhi under SERC Scheme (SR/S1/PC-31/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjaram M. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, B.M., Saikia, P. & Bharali, P. Highly Dispersed Ce x Zr1−x O2 Nano-Oxides Over Alumina, Silica and Titania Supports for Catalytic Applications. Catal Surv Asia 12, 214–228 (2008). https://doi.org/10.1007/s10563-008-9053-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-008-9053-5

Keywords

Navigation