Catalysis Surveys from Asia

, Volume 12, Issue 3, pp 214–228 | Cite as

Highly Dispersed Ce x Zr1−x O2 Nano-Oxides Over Alumina, Silica and Titania Supports for Catalytic Applications

  • Benjaram M. Reddy
  • Pranjal Saikia
  • Pankaj Bharali


We have been exploring the utilization of supported ceria and ceria–zirconia nano-oxides for different catalytic applications. In this comprehensive investigation, a series of Ce x Zr1−x O2/Al2O3, Ce x Zr1−x O2/SiO2 and Ce x Zr1−x O2/TiO2 composite oxide catalysts were synthesized and subjected to thermal treatments from 773 to 1073 K to examine the influence of support on thermal stability, textural properties and catalytic activity of the ceria–zirconia solid solutions. The physicochemical characterization studies were performed using X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HREM), thermogravimetry and BET surface area methods. To evaluate the catalytic properties, oxygen storage/release capacity (OSC) and CO oxidation activity measurements were carried out. The XRD analyses revealed the formation of Ce0.75Zr0.25O2, Ce0.6Zr0.4O2, Ce0.16Zr0.84O2 and Ce0.5Zr0.5O2 phases depending on the nature of support and calcination temperature employed. Raman spectroscopy measurements in corroboration with XRD results suggested enrichment of zirconium in the Ce x Zr1−x O2 solid solutions with increasing calcination temperature thereby resulting in the formation of oxygen vacancies, lattice defects and oxygen ion displacement from the ideal cubic lattice positions. The HREM results indicated a well-dispersed cubic Ce x Zr1−x O2 phase of the size around 5 nm over all supports at 773 K and there was no appreciable increase in the size after treatment at 1073 K. The XPS studies revealed the presence of cerium in both Ce4+ and Ce3+ oxidation states in different proportions depending on the nature of support and the treatment temperature applied. All characterization techniques indicated absence of pure ZrO2 and crystalline inactive phases between Ce–Al, Ce–Si and Ce–Ti oxides. Among the three supports employed, silica was found to stabilize more effectively the nanosized Ce x Zr1−x O2 oxides by retarding the sintering phenomenon during high temperature treatments, followed by alumina and titania. Interestingly, the alumina supported samples exhibited highest OSC and CO oxidation activity followed by titania and silica. Details of these findings are consolidated in this review.


Ceria Ceria–zirconia Al2O3 SiO2 TiO2 XRD Raman spectra XPS HREM OSC CO oxidation 



We thank Dr. S. Loridant, IRCE-Lyon, France, Dr. Y. Yamada, AIST-Kansai, Japan, Dr. A. Fernández, CSIC-UNSE-Sevilla, Spain, and Prof. Dr. W. Grünert, RU-Bochum, Germany for providing Raman, XPS, HREM, and CO activity results, respectively. P.S. and P.B. thank CSIR, New Delhi, for the award of Research Fellowships. Financial support received from DST, New Delhi under SERC Scheme (SR/S1/PC-31/2004).


  1. 1.
    Trovarelli A (2002) In: Hutchings GJ (ed) Catalysis by ceria, related materials, vol 2. Catalytic science series. Imperial College Press, LondonGoogle Scholar
  2. 2.
    Trovarelli A (1996) Catal Rev Sci Eng 38:439CrossRefGoogle Scholar
  3. 3.
    Garcia MF, Arias AM, Hanson JC, Rodriguez JA (2004) Chem Rev 104:4063CrossRefGoogle Scholar
  4. 4.
    Reddy BM, Khan A (2005) Catal Surv Asia 9:155CrossRefGoogle Scholar
  5. 5.
    Reddy BM, Bharali P, Saikia P, Khan A, Loridant S, Muhler M, Grünert W (2007) J Phys Chem C 111:1878CrossRefGoogle Scholar
  6. 6.
    Reddy BM, Lakshmanan P, Bharali P, Saikia P, Thrimurthulu G, Muhler M, Grünert W (2007) J Phys Chem C 111:10478CrossRefGoogle Scholar
  7. 7.
    Klabunde K (2001) Nanoscale materials in chemistry. Wiley-Interscience, New YorkGoogle Scholar
  8. 8.
    Natile MM, Boccaletti G, Glisenti A (2005) Chem Mater 17:6272CrossRefGoogle Scholar
  9. 9.
    Reddy BM (2006) In: Fierro JLG (ed) Metal oxides: chemistry and applications, Ch 8. CRC Press, Florida, p 215Google Scholar
  10. 10.
    Trovarelli A, de Leitenburg C, Dolcetti G (1997) Chemtech 27:32Google Scholar
  11. 11.
    Fu Q, Saltsburg H, Stephanopoulos MF (2003) Science 301:935CrossRefGoogle Scholar
  12. 12.
    Park S, Vohs JM, Gorte RJ (2000) Nature 404:265CrossRefGoogle Scholar
  13. 13.
    Deluga GA, Salge SR, Schmidt LD, Verykios XE (2004) Science 303:993CrossRefGoogle Scholar
  14. 14.
    Bocanegra-Bernal MH, de la Torre SD (2002) J Mater Sci 37:4947CrossRefGoogle Scholar
  15. 15.
    Steele BCH (1999) Nature 400:619CrossRefGoogle Scholar
  16. 16.
    Ralph JM, Schoeler AC, Krumpelt M (2001) J Mater Sci 36:1161CrossRefGoogle Scholar
  17. 17.
    Steele BCH, Heinzel A (2001) Nature 414:345CrossRefGoogle Scholar
  18. 18.
    Maskell WC (2000) Solid State Ionics 134:43CrossRefGoogle Scholar
  19. 19.
    Lee JH (2003) J Mater Sci 38:4247CrossRefGoogle Scholar
  20. 20.
    Jurado JR (2001) J Mater Sci 36:1133CrossRefGoogle Scholar
  21. 21.
    Shalliker RA, Douglas GK (1998) J Liq Chromatogr Relat Technol 21:2413CrossRefGoogle Scholar
  22. 22.
    Li RX, Yabe S, Yamashita M, Momose S, Yoshida S, Yin S, Sato T (2002) Mater Chem Phys 75:39CrossRefGoogle Scholar
  23. 23.
    Piconi C, Maccauro G (1999) Biomaterials 20:1CrossRefGoogle Scholar
  24. 24.
    Shinjoh H (2006) J Alloys Compd 408–412:1061CrossRefGoogle Scholar
  25. 25.
    Masui T, Ozaki T, Machida K, Adachi G (2000) J Alloys Compd 303–304:49CrossRefGoogle Scholar
  26. 26.
    Monte RD, Kaspar J (2005) J Mater Chem 15:633CrossRefGoogle Scholar
  27. 27.
    Gandhi HS, Graham GW, McCabe RW (2003) J Catal 216:433CrossRefGoogle Scholar
  28. 28.
    Cowley A (1999) Platinum 2004. Johnson Matthey, LondonGoogle Scholar
  29. 29.
    Kim CH, Woo SI, Jeon SH (2000) Ind Eng Chem Res 39:1185CrossRefGoogle Scholar
  30. 30.
    Stark WJ, Grunwaldt J, Maciejewski M, Pratsinis SE, Baiker A (2005) Chem Mater 17:3352CrossRefGoogle Scholar
  31. 31.
    Deganello F, Martorana A (2002) J Solid State Chem 163:527CrossRefGoogle Scholar
  32. 32.
    Ozawa M, Kimura M, Isogai A (1993) J Alloys Compd 193:73CrossRefGoogle Scholar
  33. 33.
    Cuif JP, Blanchard G, Touret O, Marczi M, Quéméré E (1996) SAE Technical Paper 96:1906 (Rhone-Poulenc)Google Scholar
  34. 34.
    Rohart E, Larcher O, Deutsch S, Hedouin C, Aimin H, Fajardie F, Allain M, Macaudiere P (2004) Topics Catal 30–31:417CrossRefGoogle Scholar
  35. 35.
    Tanabe T, Suda A, Descorme C, Duprez D, Shinjoh H, Sugiura M (2001) Stud Surf Sci 138:135CrossRefGoogle Scholar
  36. 36.
    Koermer GS, Hratko L (2003) USP No. 6,548,446 and references thereinGoogle Scholar
  37. 37.
    Kaspar J, Fornasiero P (2003) J Solid State Chem 171:19CrossRefGoogle Scholar
  38. 38.
    Bozo C, Gaillard F, Guilhaume N (2001) Appl Catal A: Gen 220:69CrossRefGoogle Scholar
  39. 39.
    Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) Langmuir 19:3025CrossRefGoogle Scholar
  40. 40.
    Si R, Zhang Y-W, Li S-J, Lin B-X, Yan C-H (2004) J Phys Chem B 108:12481CrossRefGoogle Scholar
  41. 41.
    Terribile D, Trovarelli A, Llorca J, de Leitenburg C, Dolcetti G (1998) Catal Today 43:79CrossRefGoogle Scholar
  42. 42.
    Yao MH, Baird RJ, Kunz FW, Hoost TE (1997) J Catal 166:67CrossRefGoogle Scholar
  43. 43.
    Monte RD, Fornasiero P, Kaspar J, Graziani M, Gatica JM, Bernal S, Herrero AG (2000) Chem Commun 2167Google Scholar
  44. 44.
    Corma A, Atienzar P, Garcia H, Chane-Ching J (2004) Nature Mater 3:394CrossRefGoogle Scholar
  45. 45.
    Monte RD, Fornasiero P, Desinan S, Kaspar J, Gatica JM, Calvino JJ, Fonda E (2004) Chem Mater 16:4273CrossRefGoogle Scholar
  46. 46.
    Kenevey K, Valdivieso F, Soustelle M, Pijolat M (2001) Appl Catal B: Environ 2:93CrossRefGoogle Scholar
  47. 47.
    Fornasiero P, Balducci G, Monte RD, Kaspar J, Sergo V, Gubitosa G, Ferrero A, Graziani M (1996) J Catal 164:173CrossRefGoogle Scholar
  48. 48.
    Kozlov AI, Kim DH, Yezerets A, Andersen P, Kung HH, Kung MC (2002) J Catal 209:417CrossRefGoogle Scholar
  49. 49.
    Reddy BM, Lakshmanan P, Khan A, Loridant S, Cartes CL, Rojas TC, Fernández A (2005) J Phys Chem B 109:13545CrossRefGoogle Scholar
  50. 50.
    Rocchini E, Trovarelli A, Liorca J, Graham GW, Weber WH, Maciejewski M, Baiker A (2000) J Catal 194:461CrossRefGoogle Scholar
  51. 51.
    Kucharczyk B, Tylus W, Kepinski L (2004) Appl Catal B: Environ 49:27CrossRefGoogle Scholar
  52. 52.
    Reddy BM, Lakshmanan P, Khan A, Cartes CL, Rojas TC, Fernández A (2005) J Phys Chem B 109:1781CrossRefGoogle Scholar
  53. 53.
    Preuss A, Gruehn R (1994) J Solid State Chem 110:363CrossRefGoogle Scholar
  54. 54.
    Reddy BM, Manohar B, Mehdi S (1992) J Solid State Chem 97:233CrossRefGoogle Scholar
  55. 55.
    Bond GC, Tahir SF (1991) Appl Catal 71:1CrossRefGoogle Scholar
  56. 56.
    Hadjiivanov KI, Klissurski DG (1996) Chem Soc Rev 25:61CrossRefGoogle Scholar
  57. 57.
    Lin J, Yu JC (1998) J Photochem Photobiol A: Chem 116:63CrossRefGoogle Scholar
  58. 58.
    Anderson C, Bard AJ (1994) J Phys Chem 98:1769Google Scholar
  59. 59.
    Colon G, Pijolat M, Valdivieso F, Vidal H, Kaspar J, Finocchio E, Daturi M, Binet C, Lavalley JC, Baker RT, Bernal S (1998) J Chem Soc, Faraday Trans 94:3717CrossRefGoogle Scholar
  60. 60.
    Weckhuysen BM, Schoonheydt RA (1999) Catal Today 49:441CrossRefGoogle Scholar
  61. 61.
    Gao X, Wachs IE (2000) J Phys Chem B 104:1261CrossRefGoogle Scholar
  62. 62.
    Shannon RD (1976) Acta Crystallogr A 32:751CrossRefGoogle Scholar
  63. 63.
    Meriani S, Spinolo G (1987) Powder Diffract 2:255Google Scholar
  64. 64.
    Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley, Reading, MAGoogle Scholar
  65. 65.
    Ingel RP, Lewis P, Bender BA, Rice RW (1984) Adv Ceram 12:408Google Scholar
  66. 66.
    Escribano VS, Lopez EF, Panizza M, Resini C, Amores JMG, Busca G (2003) Solid State Sci 5:1369CrossRefGoogle Scholar
  67. 67.
    Lin L-M, Li L-P, Li G-S, Su W-H (2001) Mater Chem Phys 69:236CrossRefGoogle Scholar
  68. 68.
    Yashima M, Arashi H, Kakihana M, Yoshimura M (1994) J Am Ceram Soc 77:1067CrossRefGoogle Scholar
  69. 69.
    Spanier JE, Robinson RD, Zhang F, Chan SW, Herman IP (2001) Phys Rev B 64:245407CrossRefGoogle Scholar
  70. 70.
    Weber WH, Hass KC, McBride JR (1993) Phys Rev B 48:178CrossRefGoogle Scholar
  71. 71.
    McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435CrossRefGoogle Scholar
  72. 72.
    Wachs IE, Hardcastle FD, Chan SS (1986) Spectroscopy 1:30Google Scholar
  73. 73.
    Kosmulski M (2002) Adv Colloid Interf Sci 99:255CrossRefGoogle Scholar
  74. 74.
    Wagner CD, Riggs WM, Davis LE, Moulder JF (1978) In: Muilenberg GE (ed) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie, MNGoogle Scholar
  75. 75.
    Briggs D, Seah MP (1990) Auger and X- ray photoelectron spectroscopy, practical surface analysis, vol 1, 2nd edn. Wiley, New YorkGoogle Scholar
  76. 76.
    Sawatzky GA, Post D (1979) Phys Rev B 20:1546CrossRefGoogle Scholar
  77. 77.
    Bensalem A, Verduraz FB, Delamar M, Bugli G (1995) Appl Catal A: Gen 121:81CrossRefGoogle Scholar
  78. 78.
    Burroughs A, Hamnett A, Orchard AF, Thornton G (1976) J Chem Soc, Dalton Trans 1:1686CrossRefGoogle Scholar
  79. 79.
    Noronha FB, Fendley EC, Soares RR, Alvarez WE, Resasco DE (2001) Chem Eng J 82:21CrossRefGoogle Scholar
  80. 80.
    Albero JS, Reinoso FR, Escribano AS (2002) J Catal 210:127CrossRefGoogle Scholar
  81. 81.
    Daturi M, Binet C, Lavalley J, Galtayries A, Sporken R (1999) Phys Chem Chem Phys 1:5717CrossRefGoogle Scholar
  82. 82.
    Wong PC, Li YS, Mitchell KAR (1995) Surf Rev Lett 2:297CrossRefGoogle Scholar
  83. 83.
    Reddy BM, Chowdhury B, Reddy EP, Fernández A (2001) Appl Catal A: Gen 213:279CrossRefGoogle Scholar
  84. 84.
    Galtayries A, Crucifix M, Blanchard G, Terwagne G, Sporken R (1999) Appl Surf Sci 142:159CrossRefGoogle Scholar
  85. 85.
    Nagata H, Yoshimoto M, Tsukahara T, Gonda S, Koinuma H (1991) Mater Res Soc Symp Proc 202:445Google Scholar
  86. 86.
    Inoue T, Yamamoto Y, Satoh M, Ide A, Katsumata S (1996) Thin Solid Films 281:24CrossRefGoogle Scholar
  87. 87.
    Sanchez F, Varela M, Ferrater C, Cuenca MVG, Aguiar R, Morenza JL (1993) Appl Surf Sci 70:94CrossRefGoogle Scholar
  88. 88.
    Behner H, Wecker J, Mathee T, Samwer K (1992) Surf Interf Anal 18:685CrossRefGoogle Scholar
  89. 89.
    Beiner J, Baumer M, Wang J, Madrix RJ (2000) Surf Sci 450:12CrossRefGoogle Scholar
  90. 90.
    Wang Q, Madrix RJ (2001) Surf Sci 474:L213CrossRefGoogle Scholar
  91. 91.
    Colon G, Valdivieso F, Pijolat M, Baker RT, Calvino JJ, Bernal S (1999) Catal Today 50:271CrossRefGoogle Scholar
  92. 92.
    Bernal S, Baker RT, Burrows A, Kiely CJC, Cartes CL, Perez-Omil JA, Izquierdo JMR (2000) Surf Interf Anal 29:411CrossRefGoogle Scholar
  93. 93.
    Bernal S, Calvino JJ, Cauqui MA, Gatica JM, Cartes CL, Perez-Omil JA, Pintado JM (2003) Catal Today 77:385CrossRefGoogle Scholar
  94. 94.
    Ozawa M, Loong CK (1999) Catal Today 50:329CrossRefGoogle Scholar
  95. 95.
    Aneggi E, Boaro M, de Leitenburg C, Dolcetti G, Trovarelli A (2006) J Alloys Compd 408–412:1096CrossRefGoogle Scholar
  96. 96.
    Assmann J, Narkhede V, Khodeir L, Loffler E, Hinrichsen O, Birkner A, Over H, Muhler M (2004) J Phys Chem B 108:14634CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Benjaram M. Reddy
    • 1
  • Pranjal Saikia
    • 1
  • Pankaj Bharali
    • 1
  1. 1.Inorganic and Physical Chemistry DivisionIndian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations