Functionalized SBA-15 and its Catalytic Applications in Selective Organic Transformations



Ordered, mesoporous SBA-15 functionalized with organic and inorganic moieties exhibits efficient catalytic activity in a variety of organic transformations. In this account, reviewing our own work, three-sets of surface-modified SBA-15 materials have been investigated. The first-set of materials consists of SBA-15 modified with organo-acidic (propyl thiol and propyl sulfonic acid) and basic (propyl amine and propyl adenine) moieties. The second-set of materials was prepared by grafting Mn complexes to the organo-functionalized SBA-15. The third-set composes of nanocrystalline metal oxides supported on SBA-15. All these catalysts have been characterized by structural and spectroscopic techniques. Catalytic activities of the first-set of solid materials have been investigated in acid/base-catalyzed reactions viz., ring-opening of epoxides with amines (producing β-amino alcohols), esterification, three-component-Mannich reactions and cycloaddition of CO2 to epoxides. The Mn complexes grafted on organofunctionalized SBA-15 are efficient catalysts for the chemo-, regio- and stereoselective aerial oxidation of monoterpenes at ambient conditions. TiOx, VOx, MoOx and WOx supported on SBA-15 catalyzed biomimetic oxyhalogenation of aromatic compounds. In all these reactions, the functionalized SBA-15 showed high selectivity.


Ordered mesoporous silica Organofunctionalized SBA-15 Grafted Mn–Salen complexes Oxidation catalysts Oxyhalogenation of aromatics 



Lakshi Saikia acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi for the award of a senior research fellowship.


  1. 1.
    Corma A (1997) Chem Rev 97:2373CrossRefGoogle Scholar
  2. 2.
    Selvam P, Bhatia SK, Sonwane CG (2001) Ind Eng Chem Res 40:3237CrossRefGoogle Scholar
  3. 3.
    Valkenberg MH, Hölderich WF (2002) Catal Rev Sci Eng 44:321CrossRefGoogle Scholar
  4. 4.
    Melero JA, van Grieken R, Morales G (2006) Chem Rev 106:3790CrossRefGoogle Scholar
  5. 5.
    Vinu A, Hossain KZ, Ariga K (2005) Nanosci Nanotech 5:347CrossRefGoogle Scholar
  6. 6.
    Wan Y, Zhao D (2007) Chem Rev 107:2821CrossRefGoogle Scholar
  7. 7.
    Kubota Y, Sugi Y, Tatsumi T (2007) Catal Surv Asia 11:158CrossRefGoogle Scholar
  8. 8.
    Zeidan RK, Dufaud V, Davis ME (2006) J Catal 239:299CrossRefGoogle Scholar
  9. 9.
    Das D, Lee JF, Cheng S (2001) Chem Commun 2178; (2004) J Catal 223:152Google Scholar
  10. 10.
    Yang Q, Liu J, Yang J, Kapoor MP, Inagaki S, Li C (2004) J Catal 228:265CrossRefGoogle Scholar
  11. 11.
    Shen JGC, Herman RG, Klier K (2002) J Phys Chem B 106:9975CrossRefGoogle Scholar
  12. 12.
    Herman RG, Khouri FH, Klier K, Higgins JB, Galler MR, Terenna CR (2004) J Catal 228:347CrossRefGoogle Scholar
  13. 13.
    Van Grieken R, Melero JA, Morales G (2006) J Mol Catal A Chem 256:29CrossRefGoogle Scholar
  14. 14.
    Koujout S, Brown DR (2004) Catal Lett 98:195CrossRefGoogle Scholar
  15. 15.
    Shimizu K, Hayashi E, Hatamachi T, Kodama T, Higuchi T, Satsuma A, Kitayama Y (2005) J Catal 231:131CrossRefGoogle Scholar
  16. 16.
    Sreevardhan Reddy S, David Raju B, Siva Kumar V, Padmasri AH, Narayanan S, Rama Rao KS (2007) Catal Commun 8:261CrossRefGoogle Scholar
  17. 17.
    Gupta R, Paul S, Gupta R (2007) J Mol Catal A Chem 266:50CrossRefGoogle Scholar
  18. 18.
    Rác B, Molinár Á, Forgo P, Mohai M, Bertóti I (2006) J Mol Catal A Chem 244:46CrossRefGoogle Scholar
  19. 19.
    Van Grieken R, Melero JA, Morales G (2005) Appl Catal A Gen 289:143CrossRefGoogle Scholar
  20. 20.
    Melero JA, van Grieken R, Morales G, Nuňo V (2004) Catal Commun 5:131CrossRefGoogle Scholar
  21. 21.
    Alvaro M, Corma A, Das D, Fornés V, García H (2005) J Catal 231:48CrossRefGoogle Scholar
  22. 22.
    Van Rhijn WM, De Vos DE, Sels BF, Bossaert WD, Jacobs PA (1998) Chem Commun 317Google Scholar
  23. 23.
    Cano-Serrano E, Campos-Martin JM, Fierro JLG (2003) Chem Commun 246Google Scholar
  24. 24.
    Mbaraka IK, Radu DR, Lin VSY, Shanks BH (2003) J Catal 219:329CrossRefGoogle Scholar
  25. 25.
    Yang Q, Kapoor MP, Shirokura N, Ohashi M, Inagaki S, Kondo JN, Domen K (2005) J Mater Chem 15:666CrossRefGoogle Scholar
  26. 26.
    Feng YF, Yang XY, Di Y, Du YC, Zhang YL, Xiao FS (2006) J Phys Chem B 110:14142CrossRefGoogle Scholar
  27. 27.
    Karam A, Gu Y, Jérôme F, Douliez JP, Barrault J (2007) Chem Commun 2222Google Scholar
  28. 28.
    Mbaraka IK, Shanks BH (2006) J Catal 244:78CrossRefGoogle Scholar
  29. 29.
    Jackson MA, Mbaraka IK, Shanks BH (2006) Appl Catal A Gen 310:48CrossRefGoogle Scholar
  30. 30.
    Wang X, Cheng S, Chan JCC (2007) J Phys Chem 111:2156Google Scholar
  31. 31.
    Ajaikumar S, Pandurangan A (2007) J Mol Catal A Chem 266:1CrossRefGoogle Scholar
  32. 32.
    Bossaert WD, De Vos DE, Van Rhijn WM, Bullen J, Grobet PJ, Jacobs PA (1999) J Catal 182:156CrossRefGoogle Scholar
  33. 33.
    Díaz I, Márquez-Alvarez C, Mohino F, Pérez-Pariente J, Sastre E (2000) J Catal 193:295CrossRefGoogle Scholar
  34. 34.
    Dias AS, Pillinger M, Valente AA (2005) J Catal 229:414CrossRefGoogle Scholar
  35. 35.
    Dhepe PL, Ohashi M, Inagaki S, Ichikawa M, Fukuoka A (2005) Catal Lett 102:163CrossRefGoogle Scholar
  36. 36.
    Zeidan RK, Davis ME (2007) J Catal 247:379CrossRefGoogle Scholar
  37. 37.
    Zhang H, Xiang S, Li C (2005) Chem Commun 1209Google Scholar
  38. 38.
    Zhang H, Zhang Y, Li C (2006) J Catal 238:369CrossRefGoogle Scholar
  39. 39.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548CrossRefGoogle Scholar
  40. 40.
    Feng F, Fryxell GE, Wang LQ, Kim AY, Kemner KM (1997) Science 276:923CrossRefGoogle Scholar
  41. 41.
    Saikia L, Srinivas D, Ratnasamy P (2006) Appl Catal A Gen 309:144CrossRefGoogle Scholar
  42. 42.
    Srivastava R, Srinivas D, Ratnasamy P (2005) J Catal 233:1CrossRefGoogle Scholar
  43. 43.
    Srivastava R, Srinivas D, Ratnasamy P (2006) Micropor Mesopor Mater 90:314CrossRefGoogle Scholar
  44. 44.
    Srinivasan K, Michaud P, Kochi JK (1986) J Am Chem Soc 108:2309CrossRefGoogle Scholar
  45. 45.
    Saikia L, Srinivas D, Ratnasamy P (2007) Micropor Mesopor Mater 104:225CrossRefGoogle Scholar
  46. 46.
    Srinivas D, Ratnasamy P (2007) Micropor Mesopor Mater 105:170CrossRefGoogle Scholar
  47. 47.
    Saikia L, Satyarthi JK, Srinivas D, Ratnasamy P (2007) J Catal 252:148CrossRefGoogle Scholar
  48. 48.
    Hanson RM (1991) Chem Rev 91:437CrossRefGoogle Scholar
  49. 49.
    Garcia R, Martinez M, Aracil J (1999) Chem Eng Technol 22:12CrossRefGoogle Scholar
  50. 50.
    Zaidi A, Gainer JL, Carta G (1995) Biotechnol Bioeng 48:601CrossRefGoogle Scholar
  51. 51.
    Pizzio LR, V´azquez PG, C´aceres CV, Blanco MN (2003) Appl Catal A Gen 256:125CrossRefGoogle Scholar
  52. 52.
    Pizzio LR, Blanco MN (2003) Appl Catal A Gen 255:265CrossRefGoogle Scholar
  53. 53.
    Teo HTR, Saha B (2004) J Catal 228:174CrossRefGoogle Scholar
  54. 54.
    Kobayashi S, Ishitani H (1999) Chem Rev 99:1069CrossRefGoogle Scholar
  55. 55.
    Trost BM, Terrell LRJ (2003) J Am Chem Soc 125:338CrossRefGoogle Scholar
  56. 56.
    Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD (2000) Chem Mater 12:2448CrossRefGoogle Scholar
  57. 57.
    Sels BF, De Vos DE, Jacobs PA (2001) J Am Chem Soc 123:8350CrossRefGoogle Scholar
  58. 58.
    De la Ross RI, Clague MJ, Butler A (1992) J Am Chem Soc 114:760CrossRefGoogle Scholar
  59. 59.
    Ratnasamy P, Srinivas D, Knözinger H (2004) Adv Catal 48:1CrossRefGoogle Scholar
  60. 60.
    Shetti VN, Jansi Rani M, Srinivas D, Ratnasamy P (2006) J Phys Chem B 110:677CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Catalysis DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations