Advertisement

Catalysis Surveys from Asia

, Volume 10, Issue 3–4, pp 151–160 | Cite as

“Sponge Crystal”: a novel class of microporous single crystals formed by self-assembly of polyoxometalate (NH4)3PW12O40 nanocrystallites

  • Kei Inumaru
Article

Abstract

In this account, a new concept of “sponge crystals” is presented on the basis of new interpretation of our previous results of porous heteropolyacids, that is, porous aggregates of self-assembled (NH4)3PW12O40 nanocrystallites (Ito, Inumaru, and Misono, J. Phys. Chem. B 101 (1997) 9958; Chem. Mater. 13 (2001) 824) “Sponge crystals” are defined as single crystals having continuous voids within them, but unlike zeolites, no intrinsic structural pores. This new category includes molecular single crystals having continuous voids originating from series of neighboring vacancies (≥1 nm) of the constituent large molecules, affording nanospaces in the crystals. A typical example of “sponge crystals” is (NH4)3PW12O40, which is formed via the dropwise addition of ammonium hydrogen carbonate into an H3PW12O40 aqueous solution (titration method) at 368 K. The resulting (NH4)3PW12O40 nanocrystallites (ca. 6–8 nm) then self-assemble with the same crystal orientation to form porous dodecahedral aggregates in the solution. During the formation process, necks grow epitaxially between the surfaces of the nanocrystallites (“Epitaxial Self-Assembly”) to form aggregates of which each aggregate has an ordered structure as a whole single crystal. Although the crystal structure of (NH4)3PW12O40 has no intrinsic structural(“built-in”) pores, X-ray diffraction, electron diffraction and gas adsorption experiments all reveal that each (NH4)3PW12O40 aggregate is comprised of a single crystal bearing many micropores. These pores are considered to be continuous spaces as neighboring vacancies of the molecules (anions and cations) originating from the residual spaces between the self-assembled nanocrystallites. The porous (NH4)3PW12O40 single crystals are considered a special case of “mesocrystals,” as was recently discussed by Cölfen and Antonietti (Angew. Chem. Int. Ed. 44 (2005) 5576). In contrast to most “mesocrystals,” which are generally polycrystalline in nature, each aggregate of (NH4)3PW12O40 is a characteristic porous single crystal. Furthermore, the micropores of (NH4)3PW12O40 are totally different from those found in other microporous crystals: zeolites have “built-in” pores defined by their crystal structure, while the (NH4)3PW12O40 nanocrystallites have none. Since (NH4)3PW12O40 micropores are continuous spaces as neighboring vacancies of the molecules, the shapes of the (NH4)3PW12O40 pores can in principle, assume various connectivities or networks within the crystal, and as such, are subsequently termed: “sponge crystals.”

Key words:

self-assembly eptaixial self assembly mesocrystal heteropolyacid porous crystal 

Notes

Acknowledgment

This account is based on the previous study, which was done at the University of Tokyo under the supervision of Prof. Makoto Misono and cooperation of Dr. Takeru Ito. This work was partially supported by a Grant-in-Aid from the Japan Ministry of Education for Science, Culture, Sports and Technology (MEXT), and a CREST project from the Japan Science and Technology Corporation (JST). The author thanks Dr. A. Toriki (Sumitomo 3M) for useful discussion.

References

  1. 1.
    C.B. Murray, C.R. Kagan, M.G. Bawendi, Ann. Rev. Mater. Sci. 30 (2000) 545CrossRefGoogle Scholar
  2. 2.
    H. Cölfen, S. Mann, Angew. Chem. Int. Ed. 42 (2003) 2350CrossRefGoogle Scholar
  3. 3.
    A. Stein, R.C. Schroden, Curr. Opin. Solid State Mater. Sci. 5 (2001) 553CrossRefGoogle Scholar
  4. 4.
    O.D. Velev, T.A. Jade, R.F. Lobo, A. M. Lenhoff, Nature 389 (1997) 447CrossRefGoogle Scholar
  5. 5.
    W. Luck, M. Klier, H. Wesslau, Ber. Bunsen-Ges. Phys. Chem. 67 (1963) 75Google Scholar
  6. 6.
    N.V. Dziomkina, G.J. Vancso, Soft Matter 1 (2005) 265CrossRefGoogle Scholar
  7. 7.
    R. Schlögl, S.B. Abd Hamid, Angew. Chemie Int. Ed. 43 (2004) 1628CrossRefGoogle Scholar
  8. 8.
    T.J. Barton, L.M. Bull, W.G. Klemperer, D.A. Loy, B. McEnaney, M. Misono, P.A. Monson, G. Pez, G.W. Scherer, J.C. Vartuli, O.M.K. Yaghi, Chem. Mater. 11 (1999) 2633CrossRefGoogle Scholar
  9. 9.
    M. Misono, Catal. Rev.-Sci. Eng. 29 (1987) 269; 30 (1988) 339Google Scholar
  10. 10.
    T. Okuhara, M. Mizuno, M. Misono, Adv. Catal. 41 (1996) 113CrossRefGoogle Scholar
  11. 11.
    N. Mizuno, M. Misono, Chem. Rev. 98 (1998) 199CrossRefGoogle Scholar
  12. 12.
    M. Misono, Chem. Commun. (2001) 1141Google Scholar
  13. 13.
    S. Tatematsu, H. Hibi, T. Okuhara, and M. Misono, Chem. Lett. (1984) 865Google Scholar
  14. 14.
    T. Okuhara, A. Kasai, N. Hayakawa, Y. Yoneda, M. Misono, J. Catal. 83 (1983) 121CrossRefGoogle Scholar
  15. 15.
    T. Okuhara, H. Watanabe, T. Nishimura, K. Inumaru, M. Misono, Chem. Mater. 12 (2000) 2230CrossRefGoogle Scholar
  16. 16.
    T. Okuhara, T. Nishimura, and M. Misono, Chem. Lett. (1995) 155Google Scholar
  17. 17.
    T. Ito, K. Inumaru, M. Misono, J. Phys. Chem. B. 101 (1997) 9958CrossRefGoogle Scholar
  18. 18.
    K. Inumaru, H. Nakajima, T. Ito, M. Misono, Chem. Lett. (1996) 559Google Scholar
  19. 19.
    M. Misono and K. Inumaru, JP1997–124311Google Scholar
  20. 20.
    T. Ito, I.-K. Song, K. Inumaru, and M. Misono, Chem. Lett. (1997) 727Google Scholar
  21. 21.
    T. Ito, K. Inumaru, M. Misono, Chem. Mater. 13 (2001) 824CrossRefGoogle Scholar
  22. 22.
    T. Ito, K. Inumaru and M. Misono, Chem. Lett. (2000) 830Google Scholar
  23. 23.
    K. Inumaru, T. Ito, M. Misono, Micropor. Mesopor. Mater. 21 (1998) 629CrossRefGoogle Scholar
  24. 24.
    H. Cölfen, M. Antonietti, Angew. Chem. Int. Ed. 44 (2005) 5576CrossRefGoogle Scholar
  25. 25.
    T. Okuhara, Chem. Rev. 102 (2002) 3641CrossRefGoogle Scholar
  26. 26.
    Y. Yoshinaga, K. Seki, T. Nakato, T. Okuhara, Angew. Chem. Int. Ed. Engl. 36 (1997) 2833CrossRefGoogle Scholar
  27. 27.
    Y. Yoshinaga, T. Okuhara, J. Chem. Soc., Faraday Trans. 94 (1998) 2235CrossRefGoogle Scholar
  28. 28.
    T. Okuhara, T. Yamada, K. Seki, K. Johkan, T. Nakato, Micropor. Mesopor. Mater. 21 (1998) 637CrossRefGoogle Scholar
  29. 29.
    T. Yamada, Y. Yoshinaga, T. Okuhara, Bull. Chem. Soc. Jpn. 71 (1998) 2727CrossRefGoogle Scholar
  30. 30.
    Y. Yoshinaga, K. Seki, T. Nakato, T. Okuhara, Angew. Chem. Int. Ed. Engl. 36 (1997) 2833CrossRefGoogle Scholar
  31. 31.
    T. Okuhara, T. Yamada, K. Seki, K. Johkan, T. Nakato, Micropor. Mesopor. Mater. 21 (1998) 637CrossRefGoogle Scholar
  32. 32.
    T. Okuhara, T. Nakato, Catal. Surv. Jpn. 2 (1999) 31CrossRefGoogle Scholar
  33. 33.
    T. Yamada, K. Johkan, T. Okuhara, Micropor. Mesopor. Mater. 26 (1998) 109CrossRefGoogle Scholar
  34. 34.
    M. Yosihmune, Y. Yoshinaga, T. Okuhara, Chem. Lett. (2002) 330Google Scholar
  35. 35.
    T. Yamada, Y. Yoshinaga, T. Okuhara, Bull. Chem. Soc. Jpn. 71 (1998) 2727CrossRefGoogle Scholar
  36. 36.
    Y. Yoshinaga, T. Suzuki, M. Yoshimune, T. Okuhara, Top. Catal. 19 (2002) 179CrossRefGoogle Scholar
  37. 37.
    T. Okuhara, Appl. Catal. A: Gen. 256 (2003) 213CrossRefGoogle Scholar
  38. 38.
    S.T. Gregg, M.M. Tayyab, J. Chem. Soc., Faraday Trans., I 74 (1978) 348CrossRefGoogle Scholar
  39. 39.
    J. B. McMonagle, J.B. Moffat, J. Colloid Interface Sci. 101 (1984) 479CrossRefGoogle Scholar
  40. 40.
    D. Lapham, J.B. Moffat, Langmuir 7 (1991) 2273CrossRefGoogle Scholar
  41. 41.
    S. Berndt, D. Herein, F. Zemlin, E. Beckmann, G. Weinberg, J. Schütze, G. Mestl, R. Schlögl, Ber. Bunsen-Ges. Phys. Chem. 102 (1998) 763Google Scholar
  42. 42.
    B. Judat, M. Kind J. Colloid Interface Sci. 269 (2004) 341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations