Skip to main content
Log in

“Sponge Crystal”: a novel class of microporous single crystals formed by self-assembly of polyoxometalate (NH4)3PW12O40 nanocrystallites

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In this account, a new concept of “sponge crystals” is presented on the basis of new interpretation of our previous results of porous heteropolyacids, that is, porous aggregates of self-assembled (NH4)3PW12O40 nanocrystallites (Ito, Inumaru, and Misono, J. Phys. Chem. B 101 (1997) 9958; Chem. Mater. 13 (2001) 824) “Sponge crystals” are defined as single crystals having continuous voids within them, but unlike zeolites, no intrinsic structural pores. This new category includes molecular single crystals having continuous voids originating from series of neighboring vacancies (≥1 nm) of the constituent large molecules, affording nanospaces in the crystals. A typical example of “sponge crystals” is (NH4)3PW12O40, which is formed via the dropwise addition of ammonium hydrogen carbonate into an H3PW12O40 aqueous solution (titration method) at 368 K. The resulting (NH4)3PW12O40 nanocrystallites (ca. 6–8 nm) then self-assemble with the same crystal orientation to form porous dodecahedral aggregates in the solution. During the formation process, necks grow epitaxially between the surfaces of the nanocrystallites (“Epitaxial Self-Assembly”) to form aggregates of which each aggregate has an ordered structure as a whole single crystal. Although the crystal structure of (NH4)3PW12O40 has no intrinsic structural(“built-in”) pores, X-ray diffraction, electron diffraction and gas adsorption experiments all reveal that each (NH4)3PW12O40 aggregate is comprised of a single crystal bearing many micropores. These pores are considered to be continuous spaces as neighboring vacancies of the molecules (anions and cations) originating from the residual spaces between the self-assembled nanocrystallites. The porous (NH4)3PW12O40 single crystals are considered a special case of “mesocrystals,” as was recently discussed by Cölfen and Antonietti (Angew. Chem. Int. Ed. 44 (2005) 5576). In contrast to most “mesocrystals,” which are generally polycrystalline in nature, each aggregate of (NH4)3PW12O40 is a characteristic porous single crystal. Furthermore, the micropores of (NH4)3PW12O40 are totally different from those found in other microporous crystals: zeolites have “built-in” pores defined by their crystal structure, while the (NH4)3PW12O40 nanocrystallites have none. Since (NH4)3PW12O40 micropores are continuous spaces as neighboring vacancies of the molecules, the shapes of the (NH4)3PW12O40 pores can in principle, assume various connectivities or networks within the crystal, and as such, are subsequently termed: “sponge crystals.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Similar content being viewed by others

References

  1. C.B. Murray, C.R. Kagan, M.G. Bawendi, Ann. Rev. Mater. Sci. 30 (2000) 545

    Article  CAS  Google Scholar 

  2. H. Cölfen, S. Mann, Angew. Chem. Int. Ed. 42 (2003) 2350

    Article  CAS  Google Scholar 

  3. A. Stein, R.C. Schroden, Curr. Opin. Solid State Mater. Sci. 5 (2001) 553

    Article  CAS  Google Scholar 

  4. O.D. Velev, T.A. Jade, R.F. Lobo, A. M. Lenhoff, Nature 389 (1997) 447

    Article  CAS  Google Scholar 

  5. W. Luck, M. Klier, H. Wesslau, Ber. Bunsen-Ges. Phys. Chem. 67 (1963) 75

    CAS  Google Scholar 

  6. N.V. Dziomkina, G.J. Vancso, Soft Matter 1 (2005) 265

    Article  CAS  Google Scholar 

  7. R. Schlögl, S.B. Abd Hamid, Angew. Chemie Int. Ed. 43 (2004) 1628

    Article  CAS  Google Scholar 

  8. T.J. Barton, L.M. Bull, W.G. Klemperer, D.A. Loy, B. McEnaney, M. Misono, P.A. Monson, G. Pez, G.W. Scherer, J.C. Vartuli, O.M.K. Yaghi, Chem. Mater. 11 (1999) 2633

    Article  CAS  Google Scholar 

  9. M. Misono, Catal. Rev.-Sci. Eng. 29 (1987) 269; 30 (1988) 339

    Google Scholar 

  10. T. Okuhara, M. Mizuno, M. Misono, Adv. Catal. 41 (1996) 113

    Article  CAS  Google Scholar 

  11. N. Mizuno, M. Misono, Chem. Rev. 98 (1998) 199

    Article  CAS  Google Scholar 

  12. M. Misono, Chem. Commun. (2001) 1141

  13. S. Tatematsu, H. Hibi, T. Okuhara, and M. Misono, Chem. Lett. (1984) 865

  14. T. Okuhara, A. Kasai, N. Hayakawa, Y. Yoneda, M. Misono, J. Catal. 83 (1983) 121

    Article  CAS  Google Scholar 

  15. T. Okuhara, H. Watanabe, T. Nishimura, K. Inumaru, M. Misono, Chem. Mater. 12 (2000) 2230

    Article  CAS  Google Scholar 

  16. T. Okuhara, T. Nishimura, and M. Misono, Chem. Lett. (1995) 155

  17. T. Ito, K. Inumaru, M. Misono, J. Phys. Chem. B. 101 (1997) 9958

    Article  CAS  Google Scholar 

  18. K. Inumaru, H. Nakajima, T. Ito, M. Misono, Chem. Lett. (1996) 559

  19. M. Misono and K. Inumaru, JP1997–124311

  20. T. Ito, I.-K. Song, K. Inumaru, and M. Misono, Chem. Lett. (1997) 727

  21. T. Ito, K. Inumaru, M. Misono, Chem. Mater. 13 (2001) 824

    Article  CAS  Google Scholar 

  22. T. Ito, K. Inumaru and M. Misono, Chem. Lett. (2000) 830

  23. K. Inumaru, T. Ito, M. Misono, Micropor. Mesopor. Mater. 21 (1998) 629

    Article  CAS  Google Scholar 

  24. H. Cölfen, M. Antonietti, Angew. Chem. Int. Ed. 44 (2005) 5576

    Article  CAS  Google Scholar 

  25. T. Okuhara, Chem. Rev. 102 (2002) 3641

    Article  CAS  Google Scholar 

  26. Y. Yoshinaga, K. Seki, T. Nakato, T. Okuhara, Angew. Chem. Int. Ed. Engl. 36 (1997) 2833

    Article  CAS  Google Scholar 

  27. Y. Yoshinaga, T. Okuhara, J. Chem. Soc., Faraday Trans. 94 (1998) 2235

    Article  CAS  Google Scholar 

  28. T. Okuhara, T. Yamada, K. Seki, K. Johkan, T. Nakato, Micropor. Mesopor. Mater. 21 (1998) 637

    Article  CAS  Google Scholar 

  29. T. Yamada, Y. Yoshinaga, T. Okuhara, Bull. Chem. Soc. Jpn. 71 (1998) 2727

    Article  CAS  Google Scholar 

  30. Y. Yoshinaga, K. Seki, T. Nakato, T. Okuhara, Angew. Chem. Int. Ed. Engl. 36 (1997) 2833

    Article  CAS  Google Scholar 

  31. T. Okuhara, T. Yamada, K. Seki, K. Johkan, T. Nakato, Micropor. Mesopor. Mater. 21 (1998) 637

    Article  CAS  Google Scholar 

  32. T. Okuhara, T. Nakato, Catal. Surv. Jpn. 2 (1999) 31

    Article  Google Scholar 

  33. T. Yamada, K. Johkan, T. Okuhara, Micropor. Mesopor. Mater. 26 (1998) 109

    Article  CAS  Google Scholar 

  34. M. Yosihmune, Y. Yoshinaga, T. Okuhara, Chem. Lett. (2002) 330

  35. T. Yamada, Y. Yoshinaga, T. Okuhara, Bull. Chem. Soc. Jpn. 71 (1998) 2727

    Article  CAS  Google Scholar 

  36. Y. Yoshinaga, T. Suzuki, M. Yoshimune, T. Okuhara, Top. Catal. 19 (2002) 179

    Article  CAS  Google Scholar 

  37. T. Okuhara, Appl. Catal. A: Gen. 256 (2003) 213

    Article  CAS  Google Scholar 

  38. S.T. Gregg, M.M. Tayyab, J. Chem. Soc., Faraday Trans., I 74 (1978) 348

    Article  CAS  Google Scholar 

  39. J. B. McMonagle, J.B. Moffat, J. Colloid Interface Sci. 101 (1984) 479

    Article  CAS  Google Scholar 

  40. D. Lapham, J.B. Moffat, Langmuir 7 (1991) 2273

    Article  CAS  Google Scholar 

  41. S. Berndt, D. Herein, F. Zemlin, E. Beckmann, G. Weinberg, J. Schütze, G. Mestl, R. Schlögl, Ber. Bunsen-Ges. Phys. Chem. 102 (1998) 763

    CAS  Google Scholar 

  42. B. Judat, M. Kind J. Colloid Interface Sci. 269 (2004) 341

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This account is based on the previous study, which was done at the University of Tokyo under the supervision of Prof. Makoto Misono and cooperation of Dr. Takeru Ito. This work was partially supported by a Grant-in-Aid from the Japan Ministry of Education for Science, Culture, Sports and Technology (MEXT), and a CREST project from the Japan Science and Technology Corporation (JST). The author thanks Dr. A. Toriki (Sumitomo 3M) for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Inumaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inumaru, K. “Sponge Crystal”: a novel class of microporous single crystals formed by self-assembly of polyoxometalate (NH4)3PW12O40 nanocrystallites. Catal Surv Asia 10, 151–160 (2006). https://doi.org/10.1007/s10563-006-9014-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-006-9014-9

Key words:

Navigation