Skip to main content
Log in

Adsorption and desorption of small molecules for the characterization of solid acids

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The relative acid strength and acid amount of solid acids has been determined from the adsorption and desorption of small molecules, such as argon. The order of activation energy for desorption of Ar from a solid acid, determined using temperature-programmed desorption (TPD), is sulfated zirconia > Cs2.5H0.5PW12O40 > proton-type zeolites > silica–alumina. The adsorption isotherms were analyzed using Langmuir and Henry equations. The Henry-type adsorption isotherms were also analyzed using the theory of Cremer and Flügge. The heat of Ar adsorption was 22 kJ mol−1 for sulfated zirconia and ca. 17 kJ mol−1 for mordenite, ZSM-5, and beta-zeolite. Molybdenum oxides reduced at 623 and 773 K exhibited a large heat of adsorption (19.3 and 19.7 kJ mol−1, respectively), and these materials are classified as superacids. W-Nb mixed-oxides and tungstated tin oxide (calcined at 1373 K), which are newly developed solid acids, had a heat of adsorption of 18.1 and 16.9 kJ mol−1, respectively. The type of acid site could be distinguished by comparing the heat of adsorption of Ar and N2. Our data indicate that Ar is useful for the characterization of solid acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  1. Arata K. (1990) Adv. Catal. 37: 165

    CAS  Google Scholar 

  2. Tatsumi T., Matsuhashi H., Arata K. (1996) Bull. Chem. Soc. Jpn. 69: 1191

    Article  CAS  Google Scholar 

  3. Matsuhashi H., Shibata H., Arata K. (1999) Appl. Catal. A 187: 99

    Article  CAS  Google Scholar 

  4. Arata K., Matsuhashi H., Hino M., Nakamura H. (2003) Catal. Today 81: 17

    Article  CAS  Google Scholar 

  5. Satoh D., Matsuhashi H., Nakamura H., Arata K. (2003) Catal. Lett. 89: 105

    Article  CAS  Google Scholar 

  6. Satoh D., Matsuhashi H., Nakamura H., Arata K. (2003) Phys. Chem. Chem. Phys. 5: 4343

    Article  CAS  Google Scholar 

  7. Wakayama T. , Matsuhashi H. (2005) J Mol. Catal. A 239: 32

    Article  CAS  Google Scholar 

  8. Song X., Sayari A. (1996) Catal. Rev.-Sci. Eng. 38: 329

    Article  CAS  Google Scholar 

  9. Niwa M., Katada N. (1997) Catal. Surveys Jpn. 1: 215

    Article  CAS  Google Scholar 

  10. Katada N., Igi H., Kim J., Niwa M. (1997) J Phys. Chem. B 101: 5969

    Article  CAS  Google Scholar 

  11. Katada N., Endo J., Notsu K., Yasunobu N., Naito N. ,Niwa M. (2000) J. Phys. Chem. B 104: 10321

    Article  CAS  Google Scholar 

  12. Corma A., Fornés V., Juan-Rajadell M.I., López Nieto J.M. (1994) J. Appl. Catal. A 116: 151

    Article  CAS  Google Scholar 

  13. Hunger B., Heuchel M., Clark L.A. , Snurr R.Q. (2002) J. Phys. Chem. B 106: 3882

    Article  CAS  Google Scholar 

  14. Wakabayashi F., Kondo J.N., Domen K., Hirose C. (1996) J. Phys. Chem. 100: 4154

    Article  CAS  Google Scholar 

  15. Wakabayashi F., Kondo J.N., Domen K. Hirose C. (1997) Microporous Mater. 8: 29

    Article  Google Scholar 

  16. Michot L.J., Villiéras F., Lambert J.-F., Bergaoui L., Grillet Y., Robert J.-L., (1998) J. Phys. Chem. B 102: 3466

    Article  CAS  Google Scholar 

  17. T. Nakajima and K. Hirao, Chem. Lett. (2000) 766

  18. Dunne J.A., Mariwalw R., Rao M., Sircar S., Gorte R.J. , Myera A.L. (1996) Langmuir 12: 5888

    Article  CAS  Google Scholar 

  19. Kotrel S., Lunsford J.H. , Knözinger H. (2001) J. Phys. Chem. B 105: 3917

    Article  CAS  Google Scholar 

  20. Michot L.J. , Villieras F. (2002) Clay Minerals 37: 39

    Article  CAS  Google Scholar 

  21. Yoo D.-H., Rue G.-H., Seo J.-Y., Hwang Y.H., Chan M.H.W., Kim H.-K. (2002) J. Phys. Chem. B 106: 9000

    Article  CAS  Google Scholar 

  22. Kotrel S., Lunsford J.H., Knözinger H. (2001) J. Phys. Chem. B 105: 3917

    Article  CAS  Google Scholar 

  23. Thompson C.A., Andrews L. (1994) J. Am. Chem. Soc. 116: 423

    Article  CAS  Google Scholar 

  24. Solcà N., Dopfer O. (2001) J. Phys. Chem. A 105: 5637

    Article  CAS  Google Scholar 

  25. H. Matsuhashi and K. Arata, Chem. Commun. (2000) 387

  26. Cvetanovic R.J., Amenomiya Y. (1967) Adv. Catal. 17: 103

    Article  CAS  Google Scholar 

  27. Auroux A. (2002) Top. Catal. 19: 205

    Article  CAS  Google Scholar 

  28. Matsuhashi H., Tanaka T., Arata K. (2001) J. Phys. Chem. B 105: 9669

    Article  CAS  Google Scholar 

  29. H. Matsuhashi, K. Yamagata and K. Arata, Chem. Lett. (2004) 554

  30. Matsuhashi H., Arata K. (2004) Phys. Chem. Chem. Phys. 6: 2529

    Article  CAS  Google Scholar 

  31. Langmuir I. (1918) J. Am Chem. Soc. 40: 1361

    Article  CAS  Google Scholar 

  32. Cremer E., Flügge S. (1936) Z. Phys. Chem. B 41: 411

    Google Scholar 

  33. M. Hino, S. Takasaki, S. Furuta, H. Matsuhashi and K. Arata, Chem. Commun. submitted

  34. Matsuda T., Hirata Y, Syuya S., Sakagami H., Takahashi N. (2000) Appl. Catal. A 193: 185

    Article  CAS  Google Scholar 

  35. R.M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London, 1978, Chapter 4

  36. Dohnálek Z., Smith R.S., Kay B.D. (2002) J. Phys. Chem. B 106: 8360

    Article  CAS  Google Scholar 

  37. Wakabayashi F., Kondo J.N., Domen K., Hirose C. (1993) J. Phys. Chem. 97: 10761

    Article  CAS  Google Scholar 

  38. Wakabayashi F., Kondo J.N., Domen K., Hirose C. (1995) J. Phys. Chem. 99: 10573

    Article  CAS  Google Scholar 

  39. Morterra C., Cerrato G., Pinna F., Meligrana G. (2001) Topics Catal. 15: 53

    Article  CAS  Google Scholar 

  40. Matsuda T., Tsutsumi K., Takahashi H. (1980) J. Coll. Inter. Sci. 77: 238

    Article  Google Scholar 

  41. Mizuno K., Take J., Yoneda Y. (1976) Bull. Chem. Soc. Jpn. 49: 634

    Article  CAS  Google Scholar 

  42. F. Wakabayashi, J.N. Kondo, K. Domen and C. Hirose, Catal. Lett. 38 (1996) 15

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A part of the work was supported by Core Research for Evolution Science and Technology (CREST) of the Japan Science and Technology Corporation (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Matsuhashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuhashi, H., Arata, K. Adsorption and desorption of small molecules for the characterization of solid acids. Catal Surv Asia 10, 1–7 (2006). https://doi.org/10.1007/s10563-006-9001-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-006-9001-1

KEY WORDS:

Navigation