Advertisement

Catalysis Surveys from Asia

, Volume 9, Issue 1, pp 1–9 | Cite as

Active sites of silica-based quantum photocatalysts for non-oxidative reactions

  • Hisao Yoshida
Article

Various photocatalytic reactions have been developed in recent years. Among them, non-oxidative reactions by silica-based quantum photocatalysts are quite unique. Pure silica materials, especially mesoporous silica evacuated at high temperature, were found to promote olefin metathesis upon photoirradiation at room temperature. A kind of surface defect on silica was generated through dehydroxylation at high temperature before the photoreaction, which can be photoexcited to form the first surface intermediate. On the other hand, non-oxidative direct methane coupling was revealed to proceed on silica materials and silica-based quantum photocatalysts. Also in these cases, evacuation at high temperature was required for the activation of catalyst before the reaction. The active sites and feature of silica-based quantum photocatalysts for these non-oxidative reaction systems are summarized and discussed.

KEY WORDS:

photocatalysis quantum photocatalyst mesoporous silica silica-based photocatalyst metathesis direct methane coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fujishima, A., Rao, T.N., Tryk, D.A. 2000J. Photochem. Photobiol. C: Photochem. Rev.11CrossRefGoogle Scholar
  2. [2]
    Maldotti, A., Molinari, A., Amadelli, R. 2002Chem. Rev.1023811CrossRefPubMedGoogle Scholar
  3. [3]
    Yoshida, H. 2003Curr. Opin. Solid Mater. Sci.7435CrossRefGoogle Scholar
  4. [4]
    Murata, C., Yoshida, H., Kumagai, J., Hattori, T. 2003J. Phys. Chem. B1074364CrossRefGoogle Scholar
  5. [5]
    Ivin, K.J., Mol, J.C. 1997Olefin Metathesis and Metathesis PolymerizationAcademic PressSan DiegoGoogle Scholar
  6. [6]
    H. Yoshida, T. Tanaka, S. Matsuo, T. Funabiki and S.J. Yoshida, Chem. Soc., Chem. Commun. (1995) 761Google Scholar
  7. [7]
    Tanaka, T., Matsuo, S., Maeda, T., Yoshida, H., Funabiki, T., Yoshida, S. 1997Appl. Surf. Sci.121/122296CrossRefGoogle Scholar
  8. [8]
    H. Yoshida, K. Kimura, Y. Inaki and T. Hattori, Chem. Commun. (1997) 129Google Scholar
  9. [9]
    S. Inagaki, Y. Fukushima and K. Kuroda, J. Chem. Soc., Chem. Commun. (1993) 680Google Scholar
  10. [10]
    Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L. 1992J. Am. Chem. Soc.11410834CrossRefGoogle Scholar
  11. [11]
    Inaki, Y., Yoshida, H., Kimura, K., Inagaki, S., Fukushima, Y., Hattori, T. 2000Phys. Chem. Chem. Phys.25293CrossRefGoogle Scholar
  12. [12]
    Inaki, Y., Yoshida, H., Hattori, T. 2000J. Phys. Chem. B10410304CrossRefGoogle Scholar
  13. [13]
    Inaki, Y., Yoshida, H., Yoshida, T., Hattori, T. 2002J. Phys. Chem. B1069098CrossRefGoogle Scholar
  14. [14]
    Morrow, B.A., Cody, I.A., Lee, L.S.M. 1975J. Phys. Chem.792405CrossRefGoogle Scholar
  15. [15]
    Y. Inaki, Y. Kajita, H. Yoshida, K. Ito and T. Hattori, Chem. Commun. (2001) 2358Google Scholar
  16. [16]
    L. Skuja, J. Non-Cryst. Solids 239 (1998) 16, and references thereinGoogle Scholar
  17. [17]
    Glinka, Y.D., Lin, S.-H., Hwang, L.-P., Chen, Y.-T. 2000J. Phys. Chem. B1048652CrossRefGoogle Scholar
  18. [18]
    Fois, E., Gamba, A., Tabacchi, G., Coluccia, S., Martra, G. 2003J. Phys. Chem. B10710767CrossRefGoogle Scholar
  19. [19]
    L. Skuja, in: Defect in SiO2 and Related Dielectrics: Science and Technology, eds. G. Pacchioni, L. Skuja and D.L. Griscom (Kluwer Academic Publishers, Netherlands, 2000), p. 73Google Scholar
  20. [20]
    Yoshida, H., Matsushita, N., Kato, Y., Hattori, T. 2002Phys. Chem. Chem. Phys.42459CrossRefGoogle Scholar
  21. [21]
    Yoshida, H., Kato, Y., Hattori, T. 2000Stud. Surf. Sci. Catal.130659Google Scholar
  22. [22]
    Y. Kato, H. Yoshida and T. Hattori, Chem. Commun. (1998) 2389Google Scholar
  23. [23]
    Yoshida, H., Chaskar, M.G., Kato, Y., Hattori, T. 2003J. Photochem. Photobio. A16047CrossRefGoogle Scholar
  24. [24]
    H. Yoshida, M.G. Chaskar, Y. Kato and T. Hattori, Chem. Commun. (2002) 2014Google Scholar
  25. [25]
    Tanaka, T., Yoshida, H., Nakatsuka, K., Funabiki, T., Yoshida, S. 1992J. Chem. Soc., Faraday Trans.882297Google Scholar
  26. [26]
    Yoshida, H., Tanaka, T., Funabiki, T., Yoshida, S. 1994J. Chem. Soc., Faraday Trans.902107Google Scholar
  27. [27]
    L. Yuliati, T. Hattori and H. Yoshida, Phys. Chem. Chem. Phys. 7 (2005) 1950Google Scholar
  28. [28]
    Anpo, M., Che, M. 2000Adv. Catal.44119Google Scholar
  29. [29]
    Gritscov, A.M., Shvets, V.A., Kazansky, V.B. 1975Chem. Phys. Lett.35511CrossRefGoogle Scholar
  30. [30]
    Soult, A.S., Pooré, D.D., Mayo, E.I., Stiegman, A.E. 2001J. Phys. Chem. B1052687CrossRefGoogle Scholar
  31. [31]
    Li, C., Xiong, G., Liu, J., Ying, P., Xin, Q., Feng, Z. 2001J. Phys. Chem. B1052993CrossRefGoogle Scholar
  32. [32]
    Kato, Y., Yoshida, H., Hattori, T. 2000Phys. Chem. Chem. Phys.24231CrossRefGoogle Scholar
  33. [33]
    Yoshida, H., Matsushita, N., Kato, Y., Hattori, T. 2003J. Phys. Chem. B1078355CrossRefGoogle Scholar
  34. [34]
    Kato, Y., Matsushita, N., Yoshida, H., Hattori, T. 2002Catal. Commun.399CrossRefGoogle Scholar
  35. [35]
    Kato, Y., Yoshida, H., Hattori, T. 2002Micropor. Mesopor. Mater.51223CrossRefGoogle Scholar
  36. [36]
    Matsuoka, M., Anpo, M. 2003Curr. Opin. Solid Mater. Sci.7451CrossRefGoogle Scholar
  37. [37]
    Yoshida, H., Hamajima, T., Kato, Y., Shibata, J., Satsuma, A., Hattori, T. 2003Res. Chem. Intermed.29897CrossRefGoogle Scholar
  38. [38]
    Ozin, G.A., Hugues, F. 1982J. Phys. Chem.865174CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Hisao Yoshida
    • 1
  1. 1.Division of Environmental ResearchEcoTopia Science Institute, Nagoya UniversityChikusa-kuJapan

Personalised recommendations