Plasmonic Ag Nanoparticles Decorated Acid-Aching Carbon Fibers for Enhanced Photocatalytic Reduction of CO2 into CH3OH Under Visible-Light Irradiation


In this work, acid-ached carbon fibers decorated by plasmonic Ag nanoparticles (denoted as Ag NPs/ACFs) were facile fabricated and acted as photocatalyst to convert CO2 into high value-added CH3OH. Such photocatalyst afforded a CH3OH evolution rate of 13.9 μmol g−1 h−1 without any sacrifice reagent under visible light (> 420 nm), which is 2.5 times higher than that of Ag NPs/CFs (5.5 μmol g−1 h−1). This excellent performance is ascribed to the accelerated e/h+ pairs separation and a strong interaction between Ag NPs and carbon fibers resulted by the generation of more oxygen-containing functional groups on carbon fibers, which is caused by acid acid-aching. This study may provide an important reference for plasmonic photocatalyst in potential photocatalytic applications.

Graphic Abstract

The Ag NPs/ACFs was prepared by acid aching process coupled with an ultrasonic treatment, which behaved a much higher CH3OH yield than Ag NPs/CFs without acid treatment. The increased polarized oxygen-containing functional group and the favorable interaction between Ag NPs and carbon fibers should be responsible for the significant enhancements.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Zhou L, Swearer D, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E, Nordlander P, Halas N (2018) Science 362:69

    CAS  Article  Google Scholar 

  2. 2.

    Shi W, Guo X, Cui C, Jiang K, Li Z, Qu L, Wang J (2019) Appl Catal B-Environ 243:236–242

    CAS  Article  Google Scholar 

  3. 3.

    Wu S, Yang W, Meng Z, Li L, Zhang S (2020) Catal Lett 150:3598–3607

    CAS  Article  Google Scholar 

  4. 4.

    Chen Z, Zhang H, Guo P, Zhang J, Tira G, Kim Y, Wu Y, Liu Y, Wen J, Rajh T, Niklas J, Poluektov O, Laible P, Rozhkova E (2019) J Am Chem Soc 141:11811–11815

    CAS  Article  Google Scholar 

  5. 5.

    Zhu Z, Huang W, Chen C (2018) J CO2 Util 28: 247–254.

  6. 6.

    Matinise N, Fuku X, Kaviyarasu K, Mayedwa N, Maaza M (2017) Appl Surf Sci 406:339–347

    CAS  Article  Google Scholar 

  7. 7.

    Zhang T, Low J, Koh K, Yu J (2018) Asefa 6:531–540

    Google Scholar 

  8. 8.

    Wang Y, Zhen W, Zeng Y, Wan S, Guo H, Zhang S, Zhong Q (2020) J Mater Chem A 8:6034

    CAS  Article  Google Scholar 

  9. 9.

    Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z (2012) Angew Chem Int Ed 51:3364–3367

    CAS  Article  Google Scholar 

  10. 10.

    Chen Y, Wang D, Deng X, Li Z (2017) Catal Sci Technol 7:4893

    CAS  Article  Google Scholar 

  11. 11.

    Fu Y, Zhu X, Huang L, Zhang X, Zhang F, Zhu W (2018) Appl Catal B: Environ 239:46–51

    CAS  Article  Google Scholar 

  12. 12.

    Guo K, Zhu X, Peng L, Fu Y, Ma R, Lu X, Zhang F, Zhu W, Fan M (2021) Chem Eng J 405:127011

    CAS  Article  Google Scholar 

  13. 13.

    Ding J, Bu Y, Ou M, Yu Y, Zhong Q, Fan M (2017) Appl Catal B-Environ 202:314–325

    CAS  Article  Google Scholar 

  14. 14.

    Wan S, Chen M, Ou M, Zhong Q (2019) J CO2 Util 33: 357–364.

  15. 15.

    Tahir M, Siraj M, Tahir B, Umer M, Alias H, Othman N (2020) Appl Surf Sci 503:144344

    CAS  Article  Google Scholar 

  16. 16.

    Tahir B, Tahir M, Amin N (2019) Appl Surf Sci 493:18–31

    CAS  Article  Google Scholar 

  17. 17.

    Hou W, Cronin S (2013) Adv Funct Mater 23:1612–1619

    CAS  Article  Google Scholar 

  18. 18.

    Zhang H, Fan X, Quan X, Chen S, Yu H (2011) Environ Sci Technol 45:5731–5736

    CAS  Article  Google Scholar 

  19. 19.

    Lim H, Shim H, Goddard W, Hwang Y, Min B, Kim H (2014) J Am Chem Soc 126:11355–11361

    Article  Google Scholar 

  20. 20.

    He Y, Zhang L, Teng B, Fan M (2015) Environ Sci Technol 49:649–656

    CAS  Article  Google Scholar 

  21. 21.

    Yamamoto M, Yoshida T, Yamamoto N, Nomoto T, Yamamoto Y, Yagi S, Yoshida H (2015) J Mater Chem A 3:16810–16816

    CAS  Article  Google Scholar 

  22. 22.

    Hong D, Lyu L, Koga K, Shimoyama Y, Kon Y (2019) ACS Sustainable Chem Eng 7:18955–18964

    CAS  Article  Google Scholar 

  23. 23.

    Endo M, Kim Y, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus M (2001) Carbon 39:1287–1297

    CAS  Article  Google Scholar 

  24. 24.

    Wang L, Yao Y, Zhang Z, Sun L, Lu W, Chen W, Chen H (2014) Chem Eng J 251:348–354

    CAS  Article  Google Scholar 

  25. 25.

    Fu Y, Han C, Ni Q (2009) Chinese J Chem 27:1110–1116

    CAS  Article  Google Scholar 

  26. 26.

    Liu X, Chen C, Ye H, Jia Y, Wu Y, Jin A, Wang Y (2018) Chen X 131:213–222

    CAS  Google Scholar 

  27. 27.

    Srinivasan N, Shankar P, Bandyopadhyaya R (2013) Carbon 57:1–10

    CAS  Article  Google Scholar 

  28. 28.

    Meng F, Zhao J, Ye Y, Zhang X, Li Q (2012) Nanoscale 4:7464

    CAS  Article  Google Scholar 

  29. 29.

    Song X, Gunawan P, Jiang R, Leong S, Wang K, Xu R (2011) J Hazard Mater 194:162–168

    CAS  Article  Google Scholar 

  30. 30.

    Ayranci E, Duman O (2015) J Hazard Mater 124:125–132

    Article  Google Scholar 

  31. 31.

    Li X, Hu Y, She D, Shen W (2020) Sustainability 12:3986

    CAS  Article  Google Scholar 

  32. 32.

    Díez N, Alvarez P, Granda M, Blanco C, Santamaría R, Menéndez R (2015) Chem Eng J 260:463–468

    Article  Google Scholar 

  33. 33.

    Liu X, Chen C, Ye H, Jia Y, Wu Y, Jin A, Wang Y, Chen X (2018) Carbon 131:213–222

    CAS  Article  Google Scholar 

  34. 34.

    Islam M, Deng Y, Tong L, Faisal S, Roy A, Minett A, Gomes V (2016) Carbon 96:701–710

    CAS  Article  Google Scholar 

  35. 35.

    Pei L, Zhou J, Zhang L (2013) Build Environ 63:108–113

    Article  Google Scholar 

  36. 36.

    Yao X, Liu X, Zhu D, Zhao C, Lu L (2015) Catal Commun 59:151–155

    CAS  Article  Google Scholar 

  37. 37.

    Guo H, Chen M, Zhong Q, Wang Y, Ma W, Ding J (2019) J CO2 Util 33: 233–241.

  38. 38.

    Guo H, Ding J, Wan S, Wang Y, Zhong Q (2020) Appl Sur Sci 528:146943

    CAS  Article  Google Scholar 

  39. 39.

    Khalilzadeh A, Shariati A (2018) Sol Energy 164:251–261

    CAS  Article  Google Scholar 

  40. 40.

    Truong Q, Liu J, Chung C, Ling Y (2012) Catal Commun 19:85–89

    CAS  Article  Google Scholar 

  41. 41.

    Yu J, Wang K, Xiao W, Cheng B (2014) Phys Chem Chem Phys 16:11492–11501

    CAS  Article  Google Scholar 

  42. 42.

    Bafaqeer A, Tahir M, Amin N (2018) Chem Eng J 334:2142–2153

    CAS  Article  Google Scholar 

  43. 43.

    Tahir M, Tahir B, Amin N, Zakaria Z (2017) J CO2 Util 18: 250–260.

  44. 44.

    Tahir B, Tahir M, Amin N (2019) Appl Catal B: Environ 248:167–183

    CAS  Article  Google Scholar 

Download references


This work was financially supported by National Natural Science Foundation of China (21908108), Jiangsu Province Scientific and Technological Project (BK20180449), Fundamental Research Funds for the Central Uiversities (30920041108), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, Open Fund for Large Instruments and Equipments of Nanjing University of Science and Technology.

Author information



Corresponding authors

Correspondence to Jie Ding or Qin Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 290 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Ding, J., Zhong, Q. et al. Plasmonic Ag Nanoparticles Decorated Acid-Aching Carbon Fibers for Enhanced Photocatalytic Reduction of CO2 into CH3OH Under Visible-Light Irradiation. Catal Lett (2021).

Download citation


  • CO2
  • Photocatalysis
  • Plasmonic Ag nanoparticles
  • Carbon fibers