Poly(tetrafluoroethylene-co-hexafluoropropylene)/Ferric Oxide Hybrid Membranes for High Concentration of Dye Wastewater Treatment by Heterogeneous Fenton-Like Catalysis


Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP)/ferric oxide (Fe2O3) hybrid flat-sheet membranes (HFM) (FEP/Fe2O3-HFM) with heterogeneous Fenton-like oxidation were fabricated by a facile hot pressing method for dye effluent treatment. The morphology and properties of the resultant membrane were found to be influenced by the addition of Fe2O3. With the increasing Fe2O3 content, the porosity, water flux and contact angle of the resultant FEP/Fe2O3-HFM will raise up but deteriorate mechanical performance. The maximum methylene blue (MB) removal efficiency (99.69%) can be achieved using 10 wt% Fe2O3 addition in membrane composition at following conditions: 40 mg L−1 MB concentration at pH 3, the dosage of 1.5 g g−1 (hydrogen peroxide, H2O2 to FEP/Fe2O3-HFM) in cross-flow filtration. In addition, FEP/Fe2O3-HFM shows commendable reusability enduring vigorous catalysis due to the inherit stability from fluorinated polymer. Due to high-efficient separation and good removal performance to high concentration of dye (e.g. 250 mg L−1 MB), our FEP/Fe2O3-HFMs show great promise in aqueous pollutant treatment by heterogeneous Fenton-like reaction.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Routoula E, Patwardhan SV (2020) Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Environ Sci Technol 54(2):647–664. https://doi.org/10.1021/acs.est.9b03737

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Das KC, Dhar SS (2020) Remarkable catalytic degradation of malachite green by zinc supported on hydroxyapatite encapsulated magnesium ferrite (Zn/HAP/MgFe2O4) magnetic novel nanocomposite. J Mater Sci 55(11):4592–4606. https://doi.org/10.1007/s10853-019-04294-x

    CAS  Article  Google Scholar 

  3. 3.

    Zhao J, Li W, Fan L, Quan Q, Wang J, Xiao C (2019) Yolk-porous shell nanospheres from siliver-decorated titanium dioxide and silicon dioxide as an enhanced visible-light photocatalyst with guaranteed shielding for organic carrier. J Colloid Interface Sci 534:480–489. https://doi.org/10.1016/j.jcis.2018.09.052

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Yin X, Li Y, Huang X, Tian J, Meng H, Wu W (2020) Scalable and efficient extraction of two-dimensional MoS2 nanosheets from dispersions as a co-catalyst for enhancing Fenton reactions. J Mater Sci 55(29):14358–14372. https://doi.org/10.1007/s10853-020-04897-9

    CAS  Article  Google Scholar 

  5. 5.

    Mao B, Sidhureddy B, Thiruppathi AR, Wood PC, Chen A (2020) Efficient dye removal and separation based on graphene oxide nanomaterials. New J Chem 44(11):4519–4528. https://doi.org/10.1039/C9NJ05895H

    CAS  Article  Google Scholar 

  6. 6.

    Gan Q, Hou H, Liang S, Qiu J, Tao S, Yang L, Yu W, Xiao K, Liu B, Hu J, Wang Y, Yang J (2020) Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-chlorophenol. Sci Total Environ 725:138299. https://doi.org/10.1016/j.scitotenv.2020.138299

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Yu X, Lin X, Feng W, Li W (2019) Effective removal of tetracycline by using bio-templated synthesis of TiO2/Fe3O4 heterojunctions as a UV–Fenton catalyst. Catal Lett 149(2):552–560. https://doi.org/10.1007/s10562-018-2544-8

    CAS  Article  Google Scholar 

  8. 8.

    Al-Musawi TJ, Kamani H, Bazrafshan E, Panahi AH, Silva MF, Abi G (2019) Optimization the effects of physicochemical parameters on the degradation of cephalexin in Sono-Fenton Reactor by using Box-Behnken response surface methodology. Catal Lett 149(5):1186–1196. https://doi.org/10.1007/s10562-019-02713-x

    CAS  Article  Google Scholar 

  9. 9.

    Parkhomchuk EV, García-Aguilar J, Sashkina KA, Berenguer-Murcia A, Cazorla-Amorós D, Dralyuk RI, Shestakova DO, Ayupov AB, Danilova IG, Parmon VN (2018) Ferrosilicate-based heterogeneous fenton catalysts: influence of crystallinity, porosity, and iron speciation. Catal Lett 148(10):3134–3146. https://doi.org/10.1007/s10562-018-2496-z

    CAS  Article  Google Scholar 

  10. 10.

    Huling SG, Kan E, Wingo C (2009) Fenton-driven regeneration of MTBE-spent granular activated carbon—effects of particle size and iron amendment procedures. Appl Catal B 89(3–4):651–658. https://doi.org/10.1016/j.apcatb.2009.02.002

    CAS  Article  Google Scholar 

  11. 11.

    Xu L, Wang J (2012) Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Appl Catal B 123–124:117–126. https://doi.org/10.1016/j.apcatb.2012.04.028

    CAS  Article  Google Scholar 

  12. 12.

    Lucas MS, Peres JA (2006) Decolorization of the azo dye reactive black 5 by Fenton and photo-Fenton oxidation. Dyes Pigm 71(3):236–244. https://doi.org/10.1016/j.dyepig.2005.07.007

    CAS  Article  Google Scholar 

  13. 13.

    Guo L, Chen F, Fan X, Cai W, Zhang J (2010) S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol. Appl Catal B 96(1–2):162–168. https://doi.org/10.1016/j.apcatb.2010.02.015

    CAS  Article  Google Scholar 

  14. 14.

    Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16(2):1193–1226. https://doi.org/10.1007/s13762-018-2130-z

    CAS  Article  Google Scholar 

  15. 15.

    Saharan VK, Pandit AB, Satish Kumar PS, Anandan S (2012) Hydrodynamic cavitation as an advanced oxidation technique for the degradation of acid red 88 dye. Ind Eng Chem Res 51(4):1981–1989. https://doi.org/10.1021/ie200249k

    CAS  Article  Google Scholar 

  16. 16.

    Ahmed MA, El-Katori EE, Gharni ZH (2013) Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J Alloys Compd 553:19–29. https://doi.org/10.1016/j.jallcom.2012.10.038

    CAS  Article  Google Scholar 

  17. 17.

    Xie A, Cui J, Yang J, Chen Y, Dai J, Lang J, Li C, Yan Y (2019) Photo-Fenton self-cleaning membranes with robust flux recovery for an efficient oil/water emulsion separation. J Mater Chem A 7(14):8491–8502. https://doi.org/10.1039/C9TA00521H

    CAS  Article  Google Scholar 

  18. 18.

    Sun S, Yao H, Fu W, Xue S, Zhang W (2020) Enhanced degradation of antibiotics by photo-Fenton reactive membrane filtration. J Hazard Mater 386:121955. https://doi.org/10.1016/j.jhazmat.2019.121955

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Huang Q-L, Xiao C, Miao Z-Q, Feng X, Hu X-Y (2013) Preparation and characterization of poly(tetrafluoroethylene–cohexafluoropropylene) (FEP) hollow fiber membranes for desalination. Desalin Water Treat 51(19–21):3948–3953. https://doi.org/10.1080/19443994.2013.795015

    CAS  Article  Google Scholar 

  20. 20.

    Goessi M, Tervoort T, Smith P (2007) Melt-spun poly(tetrafluoroethylene) fibers. J Mater Sci 42(19):7983–7990. https://doi.org/10.1007/s10853-006-1266-2

    CAS  Article  Google Scholar 

  21. 21.

    Li X, Zhao Y, Li W, Wang S, Liu X, Xie X, Chen J, Li Q, Jensen JO (2017) Molecular dynamics simulation of radiation grafted FEP films as proton exchange membranes: effects of the side chain length. Int J Hydrogen Energy 42(50):29977–29987. https://doi.org/10.1016/j.ijhydene.2017.09.043

    CAS  Article  Google Scholar 

  22. 22.

    Zhu H, Wang H, Wang F, Guo Y, Zhang H, Chen J (2013) Preparation and properties of PTFE hollow fiber membranes for desalination through vacuum membrane distillation. J Membr Sci 446:145–153. https://doi.org/10.1016/j.memsci.2013.06.037

    CAS  Article  Google Scholar 

  23. 23.

    Wu Y-j, Huang Q-l, Xiao C-f, Chen K-k, Li X-f, Li N-n (2014) Study on the effects and properties of PVDF/FEP blend porous membrane. Desalination 353:118–124. https://doi.org/10.1016/j.desal.2014.09.010

    CAS  Article  Google Scholar 

  24. 24.

    Matsuyama H, Teramoto M, Kudari S, Kitamura Y (2001) Effect of diluents on membrane formation via thermally induced phase separation. J Appl Polym Sci 82(1):169–177. https://doi.org/10.1002/app.1836

    CAS  Article  Google Scholar 

  25. 25.

    Cleveland V, Bingham J-P, Kan E (2014) Heterogeneous Fenton degradation of bisphenol A by carbon nanotube-supported Fe3O4. Sep Purif Technol 133:388–395. https://doi.org/10.1016/j.seppur.2014.06.061

    CAS  Article  Google Scholar 

  26. 26.

    Huang R, Fang Z, Yan X, Cheng W (2012) Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem Eng J 197:242–249. https://doi.org/10.1016/j.cej.2012.05.035

    CAS  Article  Google Scholar 

  27. 27.

    Wang W, Song J, Han X (2013) Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2. J Hazard Mater 262:412–419. https://doi.org/10.1016/j.jhazmat.2013.08.076

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 275:121–135. https://doi.org/10.1016/j.jhazmat.2014.04.054

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Li N, Chen G, Zhao J, Yan B, Cheng Z, Meng L, Chen V (2019) Self-cleaning PDA/ZIF-67@PP membrane for dye wastewater remediation with peroxymonosulfate and visible light activation. J Membr Sci 591:117341. https://doi.org/10.1016/j.memsci.2019.117341

    CAS  Article  Google Scholar 

  30. 30.

    Zhang L-P, Liu Z, Zhou X-L, Zhang C, Cai Q-W, Xie R, Ju X-J, Wang W, Faraj Y, Chu L-Y (2020) Novel composite membranes for simultaneous catalytic degradation of organic contaminants and adsorption of heavy metal ions. Sep Purif Technol 237:116364. https://doi.org/10.1016/j.seppur.2019.116364

    CAS  Article  Google Scholar 

  31. 31.

    Huang Z-H, Zhang X, Wang Y-X, Sun J-Y, Zhang H, Liu W-L, Li M-P, Ma X-H, Xu Z-L (2020) Fe3O4/PVDF catalytic membrane treatment organic wastewater with simultaneously improved permeability, catalytic property and anti-fouling. Environ Res 187:109617. https://doi.org/10.1016/j.envres.2020.109617

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Wang T, Wang Z, Wang P, Tang Y (2019) An integration of photo-Fenton and membrane process for water treatment by a PVDF@CuFe2O4 catalytic membrane. J Membr Sci 572:419–427. https://doi.org/10.1016/j.memsci.2018.11.031

    CAS  Article  Google Scholar 

  33. 33.

    Zhang Y, He C, Sharma VK, Li X-z, Tian S, Xiong Y (2011) A coupling process of membrane separation and heterogeneous Fenton-like catalytic oxidation for treatment of acid orange II-containing wastewater. Sep Purif Technol 80(1):45–51. https://doi.org/10.1016/j.seppur.2011.04.004

    CAS  Article  Google Scholar 

Download references


This work was supported by the Science and Technology Plans of Tianjin (No.18PTSYJC00170), the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (No. YESS20160168), and Scientific research project of Tianjin Municipal Education Commission (2019KJ002).

Author information



Corresponding authors

Correspondence to Jian Zhao or Qinglin Huang.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhang, H., Huang, Q. et al. Poly(tetrafluoroethylene-co-hexafluoropropylene)/Ferric Oxide Hybrid Membranes for High Concentration of Dye Wastewater Treatment by Heterogeneous Fenton-Like Catalysis. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03551-6

Download citation


  • Heterogeneous fenton
  • Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP)
  • Fe2O3
  • Hybrid membrane