Boosting the Microbial Electrosynthesis of Acetate from CO2 by Hydrogen Evolution Catalysts of Pt Nanoparticles/rGO

Abstract

Microbial electrosynthesis (MES) is an effective approach to driving the CO2 reduction to multi-carbon organic products using renewable energy. In this work, the MES of acetate from CO2 was realized by mixed bacterial consortia, in which Acetobacterium sp. acted as the dominant acetate synthesis microbial flora. To improve synthesis efficiency of MES process, hydrogen evolution reaction (HER) electrocatalyst of Pt nanoparticles on reduced graphene oxide (PtNPs/rGO) was embedded on the biocathode of carbon felt. Results showed that loading the HER catalyst of PtNPs/rGO can significantly improve the MES performance. When 0.04 mg/cm2 Pt nanoparticles was loaded on the cathode, the highest acetate synthesis rate can reach 26.2 g/m2/day, which was twofold higher than that of bare carbon felt. Moreover, PtNPs/rGO incorporated carbon felt cathode showed much lower overpotential than bare carbon felt for hydrogen evolution reaction. Hence, the increased local H2 concentration around cathode enhanced the MES performance. These findings suggested that the artificial composite system composed by HER electrocatalysts will be a promising approach to enhance the electron utilization and CO2 reduction reaction, which acted as a prospective move to meet the needs of carbon cycling and sustainable energy in the future.

Graphic Abstract

The microbial electrosynthesis efficiency of acetate from CO2 can be enhanced by hydrogen evolution catalysts using Pt Nanoparticles/rGO

.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Sakimoto KK, Wong AB, Yang P (2016) Science 351:74–77

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Tufa RA, Chanda D, Ma M, Aili D, Demissie TB, Vaes J, Li Q, Liu S, Pant D (2020) Appl Energ 277:115557

    CAS  Article  Google Scholar 

  3. 3.

    Bian B, Bajracharya S, Xu J, Pant D, Saikaly PE (2020) Bioresource Technol 302:122863

    CAS  Article  Google Scholar 

  4. 4.

    Roy M, Yadav R, Chiranjeevi P, Patil SA (2020) Bioresource Technol 320:124289

    Article  CAS  Google Scholar 

  5. 5.

    Prévoteau A, Carvajal-Arroyo JM, Ganigué R, Rabaey K (2020) Curr Opin Biotech 62:48–57

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  6. 6.

    Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Appl Environ Microbiol 77:2882–2886

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) MBio 1:e00103–e00110

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Flexer V, Jourdin L (2020) Accounts Chem Res 53:311–321

    CAS  Article  Google Scholar 

  9. 9.

    Xiang Y, Liu G, Zhang R, Lu Y, Luo H (2017) Bioresource Technol 233:227–235

    CAS  Article  Google Scholar 

  10. 10.

    Ueki T, Nevin KP, Woodard TL, Lovley DR (2014) MBio 5:e01636

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Mohanakrishna G, Reesh IMA, Vanbroekhoven K, Pant D (2020) Sci Total Environ 715:137003

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Song TS, Zhang H, Liu H, Zhang D, Wang H, Yang Y, Yuan H, Xie J (2017) Bioresource Technol 243:573–582

    CAS  Article  Google Scholar 

  13. 13.

    Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, Lu Y, Chen J, Romano M, Wallace GG, Keller J (2015) Environ Sci Technol 49:13566–13574

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Bian B, Alqahtani MF, Katuri KP, Liu D, Bajracharya S, Lai Z, Rabaey K, Saikaly PE (2018) J Mater Chem A 6:17201–17211

    CAS  Article  Google Scholar 

  15. 15.

    Srikanth S, Singh D, Vanbroekhoven K, Pant D, Kumar M, Puri SK, Ramakumar SSV (2018) Bioresource Technol 265:45–51

    CAS  Article  Google Scholar 

  16. 16.

    Rojas MDPA, Zaiat M, González ER, De Wever H, Pant D (2021) Process Biochem 101:50–58

    CAS  Article  Google Scholar 

  17. 17.

    Chen X, Cao Y, Li F, Tian Y, Song H (2018) ACS Catal 8:4429–4437

    CAS  Article  Google Scholar 

  18. 18.

    Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, Franks AE, Nevin KP, Lovley DR (2013) Energ Environ Sci 6:217–224

    CAS  Article  Google Scholar 

  19. 19.

    Nie H, Zhang T, Cui M, Lu H, Lovley DR, Russell TP (2013) Phys Chem Chem Phys 15:14290–14294

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Blanchet E, Duquenne F, Rafrafi Y, Etcheverry L, Erable B, Bergel A (2015) Energ Environ Sci 8:3731–3744

    CAS  Article  Google Scholar 

  21. 21.

    Liu C, Colón BC, Ziesack M, Silver PA, Nocera DG (2016) Science 352:1210–1213

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Yamamoto I, Saiki T, Liu SM, Ljungdahl LG (1983) J Biol Chem 258:1826–1832

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Emerson DF, Woolston BM, Liu N, Donnelly M, Currie DH, Stephanopoulos G (2019) Biotechnol Bioeng 116:294–306

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Chen Z, Mou K, Wang X, Liu L (2018) Angew Chem Int Edit 57:12790–12794

    CAS  Article  Google Scholar 

  25. 25.

    Huang H, Huang Q, Song TS, Xie J (2020) Energ Fuel 34:11299–11306

    CAS  Article  Google Scholar 

  26. 26.

    Rodrigues RM, Guan X, Iñiguez JA, Estabrook DA, Chapman JO, Huang S, Sletten EM, Liu C (2019) Nat Catal 2:407

    CAS  Article  Google Scholar 

  27. 27.

    Shahriary L, Athawale AA (2014) Int J Renew Energy Environ Eng 2:58–63

    Google Scholar 

  28. 28.

    Muzyka R, Kwoka M, Smędowski Ł, Diez N, Gryglewicz G (2017) New Carbon Mater 32:15–20

    Article  Google Scholar 

  29. 29.

    Chen Z, Mou K, Yao S, Liu L (2018) Chemsuschem 11:2944–2952

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Modestra JA, Navaneeth B, Mohan SV (2015) J CO2 Util 10:78–87

    Article  CAS  Google Scholar 

  31. 31.

    Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, DeSantis TZ, Brodie EL, Malamud D, Poles MA, Pei Z (2010) World J Gastroentero 16:4135

    CAS  Article  Google Scholar 

  32. 32.

    Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) Peerj 4

  33. 33.

    Bolger AM, Lohse M, Usadel B (2014) Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Xing Z, Liu Q, Asiri MA, Sun X (2014) Adv Mater 26:5702–5707

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Du H, Zhang X, Tan Q, Kong R, Qu F (2017) Chem Commun 53:12012–12015

    CAS  Article  Google Scholar 

  36. 36.

    Vrubel H, Moehl T, Graetzel M, Hu X (2013) Chem Commun 49:8985–8987

    CAS  Article  Google Scholar 

  37. 37.

    Xiang Y, Liu G, Zhang R, Lu Y, Luo H (2017) Bioresource Technol 241:821–829

    CAS  Article  Google Scholar 

  38. 38.

    Diekert G, Wohlfarth G (1994) Anton Leeuw Int J G 66:209–221

    CAS  Article  Google Scholar 

  39. 39.

    Mohanakrishna G, Vanbroekhoven K, Pant D (2016) J CO2 Util 15:57–64

    CAS  Article  Google Scholar 

  40. 40.

    Ding A, Yang Y, Sun G, Wu D (2016) Chem Eng J 283:260–265

    CAS  Article  Google Scholar 

  41. 41.

    Flexer V, Chen J, Donose BC, Sherrell P, Wallace GG, Keller J (2013) Energy Environ Sci 6:1291–1298

    CAS  Article  Google Scholar 

  42. 42.

    Zou L, Qiao Y, Wu XS, Li CM (2016) J Power Sources 328:143–150

    CAS  Article  Google Scholar 

  43. 43.

    Aryal N, Wan L, Overgaard MH, Stoot AC, Chen Y, Tremblay PL, Zhang T (2019) Bioelectrochemistry 128:83–93

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Bockris JOM, Ammar IA, Huq AKMS (1957) J Phys Chem 61:879–886

    CAS  Article  Google Scholar 

  45. 45.

    Hubert C, Voordouw G (2007) Appl Environ Microbiol 73:2644–2652

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Finster K, Liesack W, Tindall BJ (1997) Int J Syst Evol Micr 47:1212–1217

    CAS  Google Scholar 

  47. 47.

    Kodama Y, Watanabe K (2004) Int J Syst Evol Micr 54:2297–2300

    CAS  Article  Google Scholar 

  48. 48.

    Kwon HS, Park S, Lee CH, Ahn IS (2018) J Ind Eng Chem 57:72–76

    CAS  Article  Google Scholar 

  49. 49.

    Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Bohm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorholter FJ, Weidner S, Puhler A, Reinhold-Hurek B, Kaiser O, Linke B (2006) Nat Biotechnol 24:1384

    Article  CAS  Google Scholar 

  50. 50.

    Reinhold-Hurek B, Hurek T (2000) Int J Syst Evol Micr 50:649–659

    CAS  Article  Google Scholar 

  51. 51.

    Krieger CJ, Roseboom W, Albracht SP, Spormann AM (2001) J Biol Chem 276:12924–12927

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Beller HR, Spormann AM (1999) FEMS Microbiol Lett 178:147–153

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Zhang E, Wang F, Yu Q, Scott K, Wang X, Diao G (2017) J Power Sources 360:21–27

    CAS  Article  Google Scholar 

  54. 54.

    Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2013) Environ Sci Technol 47:6023–6029

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Dong ZS, Zhao Y, Fan L, Wang YX, Wang JW, Zhang K (2017) Int J Electrochem Sci 12:10553–10566

    CAS  Article  Google Scholar 

  56. 56.

    Ross DE, Marshall CW, May HD, Norman RS (2016) PLoS ONE 11:e0151214

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Int J Syst Evol Micr 27:355–361

    CAS  Google Scholar 

  58. 58.

    Braun M, Gottschalk G (1982) Originale C 3:368–376

    Google Scholar 

  59. 59.

    May HD, Evans PJ, LaBelle EV (2016) Curr Opin Biotech 42:225–233

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Aulenta F, Catapano L, Snip L, Villano M, Majone M (2012) Chemsuschem 5:1080–1085

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Fischer F, Lieske R, Winzer K (1932) Biochem Z 245:2–12

    Google Scholar 

  62. 62.

    Wieringa KT (1936) Anton Leeuw Int J G 3:263–273

    Article  Google Scholar 

  63. 63.

    Wood HG (1952) J Biol Chem 194:905–931

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Ragsdale SW, Pierce E (2008) BBA-Proteins and Proteom 1784:1873–1898

    CAS  Article  Google Scholar 

  65. 65.

    Lovley DR (2011) Env Microbiol Rep 3:27–35

    CAS  Article  Google Scholar 

  66. 66.

    Ragsdale SW, Clark JE, Ljungdahl LG, Lundie LL, Drake HL (1983) J Biol Chem 258:2364–2369

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D (2013) Int J Hydrogen Energ 38:3497–3502

    CAS  Article  Google Scholar 

  68. 68.

    Ju LK, Lee JF, Armiger WB (1991) Biotechnol Progr 7:323–329

    CAS  Article  Google Scholar 

  69. 69.

    Gevantman LH (2015) Chapter 5 in CRC Handbook of chemistry and physics, CRC Press

  70. 70.

    Jemai AB, Vorobiev E (2002) Int J Food Sci Tech 37:73–86

    CAS  Article  Google Scholar 

  71. 71.

    Loghavi L, Sastry SK, Yousef AE (2009) Biotechnol Progr 25:85–94

    CAS  Article  Google Scholar 

  72. 72.

    Aryal N, Ammam F, Patil SA, Pant D (2017) Green Chem 19:5748–5760

    CAS  Article  Google Scholar 

  73. 73.

    Gleizer S, Ben-Nissan R, Bar-On YM, Antonovsky N, Noor E, Zohar Y, Jona G, Krieger E, Shamshoum M, Bar-Even A, Milo R (2019) Cell 179:1255–1263

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21676288), the Fundamental Research Funds for the Central Universities, DNL Cooperation Fund, CAS (DNL 180406) and QIBEBT (Grant: QIBEBT ZZBS 201805).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Licheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 837 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhang, G., Li, F. et al. Boosting the Microbial Electrosynthesis of Acetate from CO2 by Hydrogen Evolution Catalysts of Pt Nanoparticles/rGO. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03537-4

Download citation

Keywords

  • Microbial electrosynthesis
  • Carbon dioxide
  • Acetate
  • Pt
  • Hydrogen evolution catalyst