Hydrogenolysis of N-Benzylcyclohexylamine: A Support Specific ‘Nano Effect’


The hydrogenolysis of N-benzylcyclohexylamine (NBCA) was carried out at low temperature and pressure using series of Pd/SiO2 catalysts having Pd contents between 0.5 and 10%. Three different silica supports were used, two of them having pore diameters of 60A and 40A and one an amorphous material. In the hydrogenolysis of NBCA over the Pd/SiO2 (60A) series of catalysts there was a slight increase in the reaction rate on gong from the 10% Pd to the 2% Pd catalysts. This was followed by significant rate increases using the 1% Pd, 0.75% Pd and 0.5% Pd catalysts. It is proposed that this unexpectedly large rate increase observed using the catalysts having the smallest Pd particles was the result of a true ‘nano effect’. The rates of debenzylations run over the Pd/SiO2 (40A) series of catalysts steadily increased with the use of the 10% Pd to the 2% Pd catalysts, a trend observed for some Structure Sensitive reactions, though, in this case, there was also a rate decrease using the 1% Pd catalyst even though the Pd particles in this catalyst were smaller than the others. No relationship was observed between reaction rate and Pd composition of the amorphous silica supported catalysts. It is commonly accepted that the nano effect is the result of an interaction between the small catalyst particles and the support so the electronic character of the support could have an influence on the surface electrons of the catalyst and, thus, modify its reaction capabilities.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Connor R, Adkins H (1932) J Am Chem Soc 54:4678

    CAS  Article  Google Scholar 

  2. 2.

    Augustine RL (1996) Heterogeneous catalysis for the synthetic chemist. Marcel Dekker Inc, New York

    Google Scholar 

  3. 3.

    Bremner JGM, Keeys RKF (1949) J Chem Soc 1663

  4. 4.

    Lukes RM, Wilson CL (1951) J Am Chem Soc 73:4790

    CAS  Article  Google Scholar 

  5. 5.

    Bonner WA, Zderic JA (1956) J Am Chem Soc 78:3218

    Article  Google Scholar 

  6. 6.

    Garbisch EW Jr, Schreader L, Frankel JJ (1967) J Am Chem Soc 89:4233

    CAS  Article  Google Scholar 

  7. 7.

    Murchu CO (1969) Tetrahedron Lett 3231

  8. 8.

    Khan AM, McQuilin FJ, Jardine I (1967) J Chem Soc (C) 136

  9. 9.

    Mitsui S, Inoue N, Kasahara A (1951) Nippon Kagaku Zasshi 71:203

    Article  Google Scholar 

  10. 10.

    Mitsui S, Imaizumi S (1961) Bull Chem Soc 34:774

    CAS  Article  Google Scholar 

  11. 11.

    Mitsui S, Senda Y, Konno, K (1963) Chem Ind 1354

  12. 12.

    Mitsui S, Imaizumi S (1963) Bull Chem Soc 36:855

    CAS  Article  Google Scholar 

  13. 13.

    Kieboom APG, De Kreuk JF, Van Bekkum H (1971) J Catal 20:58

    CAS  Article  Google Scholar 

  14. 14.

    Harvey FM, Bochet CG (2020) J Org Chem 85:7511

    Article  Google Scholar 

  15. 15.

    Smith GV, Roth JA (1966) J Am Chem Soc 88:3879

    CAS  Article  Google Scholar 

  16. 16.

    Sandee AJ, Chintada TJ, Groen C, Donkervoort JG, Terorde RJAM (2013) Chim Oggi 31:20

    CAS  Google Scholar 

  17. 17.

    Pitchai R, Wong SS, Takahashi N, Butt JB, Burwell RL Jr, Cohen JB (1985) J Catal 94:478

    CAS  Article  Google Scholar 

  18. 18.

    Ostgard D, Notheisz F, Zsigmond AG, Smith GV, Bartok M (1991) J. Catal. 129:519

    CAS  Article  Google Scholar 

  19. 19.

    Boudjahem AG, Bouderbala W, Soltani A (2013) Metal Org Nano Metal Chem 43:1397

    CAS  Article  Google Scholar 

  20. 20.

    Boudjahem A-G, Redjel A, Mokrane T (2012) J Indus Eng Chem 18:303

    CAS  Article  Google Scholar 

  21. 21.

    Wilson OM, Knecht MR, Garcia-Martinez JC, Crooks RM (2006) J Am Chem Soc 128:4510

    CAS  Article  Google Scholar 

  22. 22.

    Ruta M, Semegina N, Kiwi-Minsker L (2008) J Phys Chem C 112:13635

    CAS  Article  Google Scholar 

  23. 23.

    Borodzinski A (2001) Catal Lett 71:169

    CAS  Article  Google Scholar 

  24. 24.

    Weerachawanasak P, Mekasuwandumrong O, Arai M, Fujita S-I, Praserthdam P, Panpranot J (2009) J Catal 262:199

    CAS  Article  Google Scholar 

  25. 25.

    Hu J, Zhou Z, Zhang R, Li L, Cheng Z (2014) J Mol Catal A Chem 381:61

    CAS  Article  Google Scholar 

  26. 26.

    Tardy B, Noupa C, Leclercq C, Bertolini JC, Hoareau A, Treileuz M, Faure JP, Nihoul G (1991) J Catal 129:1

    CAS  Article  Google Scholar 

  27. 27.

    Albano G, Evangelisti C, Aronica LA (2017) Chem Select 2:384

    CAS  Google Scholar 

  28. 28.

    Bond GC, Sermon PA, Webb G, Buchanan DA, Wells PB (1973) Chem Commun 444

  29. 29.

    Mekasuwandumrong O, Somboonthanaki S, Praserthdam P, Panpranot J (2009) J Ind Eng Chem Res 48:2819

    CAS  Article  Google Scholar 

  30. 30.

    Meschke RW, Hartung WH (1960) J Org Chem 25:137

    CAS  Article  Google Scholar 

  31. 31.

    Campbell CT (2012) Nat Chem 4:597

    CAS  Article  Google Scholar 

  32. 32.

    Bruix A, Rodriguez JA, Ramírez PJ, Senanayak SD, Evans J, Park JB, Stacchiola D, Liu P, Hrbek J, Illas F (2012) J Am Chem Soc 134:8968

    CAS  Article  Google Scholar 

  33. 33.

    Figueras F, Gomez R, Primet M (1973) Adv Chem 121:480

    CAS  Article  Google Scholar 

  34. 34.

    Bond GC (1985) Surf Sci 156:966

    CAS  Article  Google Scholar 

  35. 35.

    Telkar MM, Rode CV, Chaudhari RV, Joshi SS, Nalawade AM (2001) Appl Catal A 273:11

    Article  Google Scholar 

  36. 36.

    Augustine RL, Thompson MM (1987) J Org Chem 52:1911

    CAS  Article  Google Scholar 

  37. 37.

    Augustine RL, Warner RW (1983) J Catal 80:358

    CAS  Article  Google Scholar 

  38. 38.

    Augustine RL, Warner RW, Melnick MJ (1984) J Org Chem 49:4853

    CAS  Article  Google Scholar 

  39. 39.

    Moss RL, Pope D, Davis BJ, Edwards DH (1979) J Catal 58:206

    CAS  Article  Google Scholar 

  40. 40.

    Numwong N, Prabnasak P, Prayoonpunratn P, Triphatthanaphong P, Sooknoi T (2020) Fuel Process Technol 203:106393

    CAS  Article  Google Scholar 

  41. 41.

    Yang F, Deng D, Pan X, Fu Q, Bao X (2015) Natl Sci Rev 2:183

    CAS  Article  Google Scholar 

  42. 42.

    Tanielyan SK, Alvez G, Marin N, Augustine RL (2014) Top Catal 57:1359

    CAS  Article  Google Scholar 

Download references


We thank Prof. Alex Fadeev of the department of Chemistry and Biochemistry at Seton Hall University for providing the nitrogen adsorption derived pore volume.

Author information



Corresponding author

Correspondence to Robert L. Augustine.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest related to the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Augustine, R.L., Tanielyan, S.K., Bhagat, R. et al. Hydrogenolysis of N-Benzylcyclohexylamine: A Support Specific ‘Nano Effect’. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03536-5

Download citation


  • Nano effect
  • Debenzylation
  • Benzylamines
  • Support effect
  • Mechanism
  • Pd/SiO2
  • N-Benzylcyclohexylamine