Hydrogenation of Aliphatic Nitriles to Primary Amines over a Bimetallic Catalyst Ni25.38Co18.21/MgO–0.75Al2O3 Under Atmospheric Pressure

Abstract

A mixed oxide supported bimetallic catalyst Ni25.38Co18.21/MgO–0.75Al2O3 was readily prepared and found to be efficient in the hydrogenation of valeronitrile (VN) to amylamine (AA) under atmospheric pressure. Under the optimal conditions: H2 to VN molar ratio of 4:1, NH3 to VN molar ratio of 3:1, reaction temperature of 130 °C and residence time of 5 s, the conversion of VN reached 100% with a AA yield of 70.8%, and a diamylamine (DAA) yield of 25.9%. This catalyst was also active in the hydrogenation of other low carbon aliphatic nitriles to their corresponding primary amines. The characterization results revealed that the catalyst had the properties of large surface area, uniform and fine dispersion of metal particles in the form of Ni/Co alloy with synergy effect between the two metals, which endowed the catalyst with good catalytic performances in the hydrogenation reaction of aliphatic nitriles.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Lawrence SA (2004) Amines: synthesis, properties and applications. Cambridge University Press, Cambridge

    Google Scholar 

  2. 2.

    Pohlki F, Doye S (2003) Chem Soc Rev 32:104

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Ricci A (2008) Amino group chemistry: from synthesis to the life sciences. Wiley-VCH, Weinheim

    Google Scholar 

  4. 4.

    Gallardo-Donaire J, Hermsen M, Wysocki J, Ernst M, Rominger F, Trapp O, Hashmi AS, Schafer A, Comba P, Schaub T (2018) J Am Chem Soc 140:355

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Liang G, Wang A, Li L, Xu G, Yan N, Zhang T (2017) Angew Chem Int Ed 129:3096

    Article  Google Scholar 

  6. 6.

    Aubin Y, Fischmeister C, Thomas CM, Renaud J (2010) Chem Soc Rev 39:4130

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Gunanathan C, Milstein D (2008) Angew Chem Int Ed 120:8789

    Article  Google Scholar 

  8. 8.

    Das K, Shibuya R, Nakahara Y, Germain N, Ohshima T, Mashima K (2012) Angew Chem Int Ed 124:154

    Article  Google Scholar 

  9. 9.

    Pingen D, Diebolt O, Vogt D (2013) ChemCatChem 5:2905

    CAS  Article  Google Scholar 

  10. 10.

    Qu Y, Xu G, Yang J, Zhang Z (2020) Appl Catal A Gen 59011:7311

    Google Scholar 

  11. 11.

    Peng Y, Geng Z, Zhao S, Wang L, Li H, Wang X, Zheng X, Zhu J, Li Z, Si R, Zeng J (2018) Nano Lett 18:3785

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Zhang G, Tang F, Wang X, An P, Wang L, Liu YN (2020) ACS Sustain Chem Eng 8:6118

    CAS  Article  Google Scholar 

  13. 13.

    Lévay K, Hegedűs L (2019) Curr Org Chem 23:1881

    Article  CAS  Google Scholar 

  14. 14.

    Blondiaux E, Cantat T (2014) Chem Commun 50:9349

    CAS  Article  Google Scholar 

  15. 15.

    Shimizu K-i, Kanno S, Kon K, Hakim Siddiki SMA, Tanaka H, Sakata Y (2014) Catal Today 232:134

    CAS  Article  Google Scholar 

  16. 16.

    Roose P, Eller K, Henkes E, Rossbacher R, Höke H (2015) Amines, aliphatic. Wiley-VCH, Weinheim

    Google Scholar 

  17. 17.

    Zhang Y, Zhang Y, Feng C, Qiu C, Wen Y, Zhao J (2009) Catal Commun 10:1454

    CAS  Article  Google Scholar 

  18. 18.

    Zhang D, Zhang Y, Wen Y, Hou K, Zhao J (2011) Chem Eng Res Des 89:2147

    CAS  Article  Google Scholar 

  19. 19.

    Zhang Y, Wei T, Pian Y, Zhao J (2013) Appl Catal A Gen 467:154

    CAS  Article  Google Scholar 

  20. 20.

    Hu Y, Jin S, Zhang Z, Zhang L, Deng J, Zhang H (2014) Catal Commun 54:45

    CAS  Article  Google Scholar 

  21. 21.

    Dai H, Guan H (2018) ACS Catal 8:9125

    CAS  Article  Google Scholar 

  22. 22.

    Adam R, Bheeter CB, Cabrero-Antonino JR, Junge K, Jackstell R, Beller M (2017) ChemSusChem 10:842

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Tokmic K, Jackson BJ, Salazar A, Woods TJ, Fout AR (2017) J Am Chem Soc 139:13554

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Wang J, Tang Q, Jin S, Wang Y, Yuan Z, Chi Q, Zhang Z (2020) New J Chem 44:549

    CAS  Article  Google Scholar 

  25. 25.

    Hegedus L, Máthé T (2005) Appl Catal A Gen 296:209

    CAS  Article  Google Scholar 

  26. 26.

    Segobia DJ, Trasarti AF, Apesteguía CR (2012) Appl Catal A Gen 445–446:69

    Article  CAS  Google Scholar 

  27. 27.

    Huang Y, Adeeva V, Sachtler WMH (2000) Appl Catal A Gen 196:73

    CAS  Article  Google Scholar 

  28. 28.

    Rode CV, Arai M, Shirai M, Nishiyama Y (1997) Appl Catal A Gen 148:405

    CAS  Article  Google Scholar 

  29. 29.

    Coq B, Tichit D, Ribet S (2000) J Catal 189:117

    CAS  Article  Google Scholar 

  30. 30.

    Huang Y, Sachtler WMH (1999) J Catal 188:215

    CAS  Article  Google Scholar 

  31. 31.

    Hao Y, Li M, Cárdenas-Lizana F, Keane MA (2016) Catal Struct React 1:132

    Article  Google Scholar 

  32. 32.

    Segobia DJ, Trasarti AF, Apesteguía CR (2014) Catal Struct React 4:4075

    CAS  Google Scholar 

  33. 33.

    Saad F, Comparot JD, Brahmi R, Bensitel M, Pirault-Roy L (2017) Appl Catal A Gen 544:1

    CAS  Article  Google Scholar 

  34. 34.

    Gluhoi AC, Mărginean P, Stănescu U (2005) Appl Catal A Gen 294:208

    CAS  Article  Google Scholar 

  35. 35.

    Verhaak MJFM, Dillen AJ, Geus JW (1994) Catal Lett 26:37

    CAS  Article  Google Scholar 

  36. 36.

    Chen H, Xue M, Hu S, Shen J (2012) Chem Eng J 181–182:677

    Article  CAS  Google Scholar 

  37. 37.

    Yadav GD, Kharkara MR (1995) Appl Catal A Gen 126:115

    CAS  Article  Google Scholar 

  38. 38.

    Arai M, Ebina T, Shirai M (1999) Appl Surf Sci 148(3–4):155

    CAS  Article  Google Scholar 

  39. 39.

    Braos-García P, García-Sancho C, Infantes-Molina A, Rodríguez-Castellón E, Jiménez-López A (2010) Appl Catal A Gen 381:132

    Article  CAS  Google Scholar 

  40. 40.

    Liu C, Li X, Wang T (2015) RSC Adv 5:57277

    CAS  Article  Google Scholar 

  41. 41.

    Gomez S, Peters JA, Maschmeyer T (2002) Adv Synth Catal 344:1037

    CAS  Article  Google Scholar 

  42. 42.

    Santamaria L, Lopez G, Arregi A, Artetxe M, Amutio M, Bilbao J, Olazar M (2020) J Ind Eng Chem 91:167

    CAS  Article  Google Scholar 

  43. 43.

    Qiu Y, Huang H, Song W, Gan Y, Wang K, Zhang J, Xia Y, Liang C, He X, Zhang W (2020) J Alloys Compd 834:155111

    CAS  Article  Google Scholar 

  44. 44.

    Sciortino L, Giannici F, Martorana A, Ruggirello AM, Liveri VT, Portale G, Casaletto MP, Longo A (2011) J Phys Chem C 115:6360

    CAS  Article  Google Scholar 

  45. 45.

    Aldana-González J, Romero-Romo M, Robles-Peralta J, Morales-Gil P, Palacios-González E, Ramírez-Silva MT, Mostany J, Palomar-Pardavé M (2018) Electrochim Acta 276:417

    Article  CAS  Google Scholar 

  46. 46.

    Zhang S, Huang BS, Shi C, Xu Q, Zhu Y (2020) Colloids Surf A 605:125243

    CAS  Article  Google Scholar 

  47. 47.

    Gao T, Chen J, Fang W, Cao Q, Su W, Dumeignil F (2018) J Catal 368:53

    CAS  Article  Google Scholar 

  48. 48.

    Lozano-Blanco G, Adamczyk AJ (2019) Surf Sci 688:31

    CAS  Article  Google Scholar 

  49. 49.

    Sarnecki A, Adamski P, Albrecht A, Komorowska A, Nadziejko M, Moszyński D (2018) Vacuum 155:434

    CAS  Article  Google Scholar 

  50. 50.

    Łojewska J, Makowski WA, Tyszewski T, Dziembaj R (2001) Catal Today 69:409

    Article  Google Scholar 

  51. 51.

    Zhao B, Liu P, Li S, Shi H, Jia X, Wang Q, Yang F, Song Z, Guo C, Hu J, Chen Z, Yan X, Ma X (2020) Appl Catal B Environ 278:119307

    CAS  Article  Google Scholar 

  52. 52.

    Lowell S, Shields JE, Thommes M, Thomas MA (2004) Characterization of porous solids and powders: surface area, pore size and density. Springer Science+Business Media, New York

    Google Scholar 

  53. 53.

    Zhang F, Zhao C, Chen S, Li H, Yang H, Zhang XM (2017) J Catal 348:212

    CAS  Article  Google Scholar 

  54. 54.

    Wang Z, Wang C, Chen S, Liu Y (2014) Int J Hydrog Energy 39:5644

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (Grant No. 21476057), the Central Government Guides Local Science and Technology Development Project (Grant No. 206Z4001G) and the Natural Science Foundation of Hebei Province of China (Grant No. B2016202393).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yuecheng Zhang or Jiquan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 83 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Zhu, H., Han, Y. et al. Hydrogenation of Aliphatic Nitriles to Primary Amines over a Bimetallic Catalyst Ni25.38Co18.21/MgO–0.75Al2O3 Under Atmospheric Pressure. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03532-9

Download citation

Keywords

  • Ni/Co bimetallic catalyst
  • Nitrile hydrogenation
  • Valeronitrile
  • Amylamine
  • Mixed MgO–Al2O3 support