Ionization of Porous Hypercrosslinked Polymers for Catalyzing Room-Temperature CO2 Reduction via Formamides Synthesis


Porous materials with heterogeneous nature occupy a pivotal position in the chemical industry. This work described a facile pre- and post-synthetic approach to modify porous hypercrosslinked polymer with quaternary ammonium bromide, rendering it as efficient catalyst for CO2 conversion. The as-prepared porous ionic polymer (PiP@QA) displayed an improved specific surface area of 301 m2·g−1 with hierarchically porous structure, good selective adsorption of CO2, as well as high ion density. Accordingly, PiP@QA catalyst exhibited excellent catalytic performances for the solvent-free synthesis of various formamides from CO2, amines and phenylsilane under 35 °C and 0.5 MPa. We speculated that the superior catalytic efficiency and broad substrate scope of this catalyst could be resulted from the synergistic effect of flexible ionic sites with unique nanoporous channel that might increase the collision probability of reactants and active sites as well as enhance the diffusion of reactants and products during the reaction process. With the good reusability, PiP@QA was also available for the efficient conversion of simulated flue gas (15% CO2 in N2, v/v) into target formamides with quantitative selectivity at room temperature, which further highlighted its industrial application potential in chemical recycling the real-word CO2 to valuable products.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2


  1. 1.

    Das Neves Gomes C, Jacquet O, Villiers C, Thuéry P, Ephritikhine, M, Cantat T (2012) Angew Chem Int Ed 51:187

  2. 2.

    Liu Q, Wu LP, Jackstell R, Beller M (2015) Nat Commun 6:5933

    Article  Google Scholar 

  3. 3.

    Yuan GQ, Qi CR, Wu WQ, Jiang HF (2017) Curr Opin Green Sust Chem 3:22

    Google Scholar 

  4. 4.

    Liu X-F, Ma R, Qiao C, Cao H, He L-N (2016) Chem Eur J 22:16489

    CAS  Article  Google Scholar 

  5. 5.

    Hao L, Zhao Y, Yu B, Yang Z, Zhang H, Han B, Gao X, Liu Z (2015) ACS Catal 5:4989

    CAS  Article  Google Scholar 

  6. 6.

    Saptal V, Shinde DB, Banerjee R, Bhanage BM (2016) Catal Sci Technol 6:6152

    CAS  Article  Google Scholar 

  7. 7.

    Jacquet O, Das Neves Gomes C, Ephritikhine M, Cantat T (2012) J Am Chem Soc 134:2934

    CAS  Article  Google Scholar 

  8. 8.

    Xie C, Song J, Wu H, Zhou B, Wu C, Han B (2017) ACS Sustainable Chem Eng 5:7086

    CAS  Article  Google Scholar 

  9. 9.

    Fang C, Lu C, Liu M, Zhu Y, Fu Y, Lin B-L (2016) ACS Catal 6:7876

    CAS  Article  Google Scholar 

  10. 10.

    Wang M-Y, Wang N, Liu X-F, Qiao C, He L-N (2018) Green Chem 20:1564

    CAS  Article  Google Scholar 

  11. 11.

    Li XF, Zhang XG, Chen F, Zhang XH (2018) J Org Chem 83:12815

    CAS  Article  Google Scholar 

  12. 12.

    Frogneux X, Jacquet O, Cantat T (2014) Catal Sci Technol 4:1529

    CAS  Article  Google Scholar 

  13. 13.

    Riduan SN, Ying JY, Zhang Y (2016) J Catal 343:46

    CAS  Article  Google Scholar 

  14. 14.

    Zhou H, Wang G-X, Zhang W-Z, Lu X-B (2015) ACS Catal 5:6773

    CAS  Article  Google Scholar 

  15. 15.

    Chong CC, Kinjo R (2015) Angew Chem Int Ed 54:12116

    CAS  Article  Google Scholar 

  16. 16.

    Zhao WF, Chi XP, Li H, He J, Long JX, Xu YF, Yang S (2019) Green Chem 21:567

    CAS  Article  Google Scholar 

  17. 17.

    Liu X-F, Li X-Y, Qiao C, Fu H-C, He L-N (2017) Angew Chem Int Ed 56:7425

    CAS  Article  Google Scholar 

  18. 18.

    Hulla M, Ortiz D, Katsyuba S, Vasilyev D, Dyson PJ (2019) Chem Eur J 25:11074

    CAS  Article  Google Scholar 

  19. 19.

    Luo RC, Lin XW, Lu J, Zhou XT, Ji HB (2017) Chin J Catal 38:1382

    CAS  Article  Google Scholar 

  20. 20.

    Liu Z-W, Han B-H (2019) Curr Opin Green Sust Chem 16:20

    CAS  Google Scholar 

  21. 21.

    Sun Q, Jin Y, Aguila B, Meng X, Ma S, Xiao F-S (2016) Chemsuschem 10:1160

    Article  Google Scholar 

  22. 22.

    Chen Y, Luo R, Ren Q, Zhou X, Ji H (2020) Ind Eng Chem Res 59:20269

    CAS  Article  Google Scholar 

  23. 23.

    Hui W, He X-M, Xu X-Y, Chen Y-M, Zhou Y, Li Z-M, Zhang L, Tao D-J (2020) J CO2 Util 36:169

  24. 24.

    Song Y, Sun Q, Aguila B, Ma S (2020) Catal Today 356:557

    CAS  Article  Google Scholar 

  25. 25.

    Song Y, Sun Q, Lan PC, Ma S (2020) ACS Appl Mater Interfaces 12:32827

    CAS  Article  Google Scholar 

  26. 26.

    Xu D, Guo JN, Yan F (2018) Prog Polym Sci 79:121

    CAS  Article  Google Scholar 

  27. 27.

    Chen YJ, Luo R, Xu QH, Jiang J, Zhou XT, Ji HB (2018) ACS Sustainable Chem Eng 6:1074

    CAS  Article  Google Scholar 

  28. 28.

    Li J, Jia DG, Guo ZJ, Liu YQ, Lu YN, Zhou Y, Wang J (2017) Green Chem 19:2675

    CAS  Article  Google Scholar 

  29. 29.

    Huang K, Zhang J-Y, Liu FJ, Dai S (2018) ACS Catal 8:9079

    CAS  Article  Google Scholar 

  30. 30.

    Chen YJ, Luo RC, Bao JH, Xu QH, Jiang J, Zhou XT, Ji HB (2018) J Mater Chem A 6:9172

    CAS  Article  Google Scholar 

  31. 31.

    Dai ZF, Sun Q, Liu XL, Bian CQ, Wu QM, Pan SX, Wang L, Meng XJ, Deng F, Xiao F-S (2016) J Catal 338:202

    CAS  Article  Google Scholar 

  32. 32.

    Sun Q, Aguila B, Perman J, Nguyen N, Ma S (2016) J Am Chem Soc 138:5790

    Google Scholar 

  33. 33.

    Dong B, Wang L, Zhao S, Ge R, Song X, Wang Y, Gao Y (2016) Chem Commun 52:7082

    CAS  Article  Google Scholar 

  34. 34.

    Chen YJ, Luo RC, Xu QH, Jiang J, Zhou XT, Ji HB (2017) Chemsuschem 10:2534

    CAS  Article  Google Scholar 

  35. 35.

    Zhu J-H, Chen Q, Sui Z-Y, Pan L, Yu J, Han B-H (2014) J Mater Chem A 2:16181

    CAS  Article  Google Scholar 

  36. 36.

    Dani A, Crocellà V, Magistris C, Santoro V, Yuan J, Bordiga S (2017) J Mater Chem A 5:372

    CAS  Article  Google Scholar 

  37. 37.

    Xie YQ, Sun Q, Fu YW, Song L, Liang J, Xu X, Wang HT, Li JH, Tu S, Lu X, Li J (2017) J Mater Chem A 5:25594

    CAS  Article  Google Scholar 

  38. 38.

    Li J, Han YL, Ji T, Wu NH, Lin H, Jiang J, Zhu JH (2019) Ind Eng Chem Res 59:676

    Article  Google Scholar 

  39. 39.

    Zhu X, Tian C, Jin T, Wang J, Mahurin SM, Mei W, Xiong Y, Hu J, Feng X, Liu H, Dai S (2014) Chem Commun 50:15055

    CAS  Article  Google Scholar 

  40. 40.

    Chen J, Li H, Zhong MM, Hua YQ (2016) Green Chem 18:6493

    CAS  Article  Google Scholar 

  41. 41.

    Wang JQ, Sng WH, Yi GS, Zhang YG (2015) Chem Commun 51:12076

    CAS  Article  Google Scholar 

Download references


We gratefully acknowledge the financial support from the National Natural Science Foundation of China (21938001, 21961160741 and 22078072), the Guangdong Basic and Applied Basic Research Foundation (2019A1515010612), the Natural Science Foundation of Guangdong Province (2018A030307004), Characteristic Innovation Project of Guangdong Ordinary University (2019KTSCX107), Guangdong University of Petrochemical Technology Scientific Research Foundation (2019rc049), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01C102), Innovation Team Project of Guangdong Ordinary University (2019KCXTD002) and Scientific Research Innovation Team Foundation of Guangdong University of Petrochemical Technology.

Author information



Corresponding authors

Correspondence to Yaju Chen or Hongbing Ji.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 12906 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, Q., Chen, Y., Qiu, Y. et al. Ionization of Porous Hypercrosslinked Polymers for Catalyzing Room-Temperature CO2 Reduction via Formamides Synthesis. Catal Lett (2021).

Download citation


  • Porous ionic polymers
  • Carbon dioxide
  • Reduction
  • N-formylation
  • Heterogeneous catalysis