Abstract
Herein, we report a chemoselective insertion of CO2 into unsaturated alkyne substrates under ambient conditions, which is achieved over poly (sulfobetain methacrylate) (p(SBMA)) supported Cu2O nanocatalyst (Cu2O/p(SBMA)) and a series of 3a,4-dihydronaphtho[2,3-c]furan-1(3H)-ones, can be obtained in excellent yields. Cu2O/p(SBMA) presents high performance for environment pressure activation and interpolation of CO2 into unsaturated alkyne substrates. This provides an attainable and competent catalyst for interpolation of CO2 into aryl alkynes, and binding allylic chlorides through SN2 mechanism in order to produce efficient ester and lactone heterocycles that are supposed to have favorable utilizations. All in all, these findings signify practical methods of hybrid catalyst development for detailed alterations, including CO2 employment in a green and sustainable manner.
Graphic Abstract

This is a preview of subscription content, access via your institution.










References
- 1.
He Z, Xia Y, Tang B, Jiang X, Su J (2016) Mater Lett 184:148–151
- 2.
Li H, Su Z, Hu S, Yan Y (2017) Appl Catal B 207:134–142
- 3.
Scuderi V, Amiard G, Boninelli S, Scalese S, Miritello M, Sberna PM, Impellizzeri G, Privitera V (2016) Mater Sci Semicond Process 42:89–93
- 4.
Nielsen DU, Hu XM, Daasbjerg K, Skrydstrup T (2018) Nat Catal 1:244–254
- 5.
Peter SC (2018) ACS Energy Lett 3:1557–1561
- 6.
Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J (2017) Nat Commun 8:15174
- 7.
Poliakoff M, Leitner W, Streng ES (2015) Faraday Discuss 183:9–17
- 8.
Aresta M, Tommasi I (1997) Energ Convers Manag 38:S373–S378
- 9.
Clark JH (2006) Green Chem 8:17–21
- 10.
Clark JH (1999) Green Chem 1:1–8
- 11.
Sheldon RA (2007) Green Chem 9:1273–1283
- 12.
Sheldon RA (2016) Green Chem 18:3180–3183
- 13.
Huang K, Sun CL, Shi ZJ (2011) Chem Soc Rev 40:2435–2452
- 14.
Pinaka A, Vougioukalakis GC (2015) Coord Chem Rev 288:69–97
- 15.
Yu D, Teong SP, Zhang Y (2015) Chem Rev 293–294:279–291
- 16.
Goeppert A, Czaun M, Jones JP (2014) Chem Soc Rev 43:7995–8048
- 17.
Peppel W (1958) J Ind Eng Chem 50:767–770
- 18.
Shaikh AAG, Sivaram S (1996) Chem Rev 96:951–976
- 19.
North M, Pasquale R (2009) Angew. Chem Int Ed 48:2946–2948
- 20.
Yan P, Jing HW (2009) Adv Synth Catal 351:1325–1332
- 21.
Baba A, Nozaki T, Matsuda H (1987) Bull Chem Soc Jpn 60:1552–1554
- 22.
North M, Young C (2011) Catal Sci Technol 1:93–99
- 23.
Supasitmongkol S, Styring P (2014) Catal Sci Technol 4:1622–1630
- 24.
Elmas S, Subhani MA, Harrer M, Leitner W, Sundermeyer J, Mueller TE (2014) Catal Sci Technol 4:1652–1657
- 25.
Pena Carrodeguas L, Gonzalez-Fabra J, Castro-Gomez F, Bo C (2015) Chem Eur J 21:6115–6122
- 26.
Montoya CA, Paninho AB, Felix PM, Zakrzewska ME, Vital J, Najdanovic-Visak V, Nunes AVM (2015) J Supercrit Fluid 100:155–159
- 27.
Macherla VR, Liu J, Sunga M, White DJ, Grodberg J, Teisan S, Lam KS, Potts BC (2007) J Nat Prod 70:1454–1457
- 28.
Katayama S, Myoga A, Akahori Y (1992) J Phys Chem 96:4698–4701
- 29.
Zhao Y, Chen W, Yang Y, Yang X, Xu H (2007) Colloid Polym Sci 285:1395–1400
- 30.
Mohan YM, Geckeler KE (2007) React Funct Polym 67:144–155
- 31.
Das M, Kumacheva E (2006) Colloid Polym Sci 284:1073–1084
- 32.
Georgiev GS, Kamenska EB, Vassileva ED, Kamenova IP, Georgieva VT, Iliev SB, Ivanov IA (2006) Biomacromol 7:1329–1334
- 33.
Kamenova I, Harrass M, Lehmann B, Friedrich K, Ivanov I, Georgiev G (2007) Macromol Symp 254:122–127
- 34.
Das M, Sanson N, Kumacheva E (2008) Chem Mater 20:7157–7163
- 35.
Chen SF, Zheng J, Li LY, Jiang SY (2005) J Am Chem Soc 127:14473–14478
- 36.
Vogler EA (1998) Adv Colloid Interface Sci 74:69–117
- 37.
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: anintroduction to materials in medicine. Academic Press, San Diego, pp 59–65
- 38.
Shih YJ, Chang Y (2010) Langmuir 26:17286–17294
- 39.
Zhang Z, Chen SF, Chang Y, Jiang SY (2006) J Phys Chem B 110:10799–10804
- 40.
Zhang Z, Chao T, Chen SF, Jiang SY (2006) Langmuir 22:10072–10077
- 41.
Ladd J, Zhang Z, Chen SF, Hower JC, Jiang SY (2008) Biomacromol 9:1357–1361
- 42.
Cheng G, Zhang Z, Chen SF, Bryers JD, Jiang SY (2007) Biomaterials 28:4192–4199
- 43.
Zhang Z, Zhang M, Chen SF, Horbett TA, Ratner BD, Jiang SY (2008) Biomaterials 29:4285–4291
- 44.
Zhang Z, Chao T, Liu LY, Cheng G, Ratner BD, Jiang SY (2009) J Biomat Sci Polym E 20:1845–1859
- 45.
Chang Y, Chen SF, Zhang Z, Jiang SY (2006) Langmuir 22:2222–2226
- 46.
Tian M, Wang J, Zhang E, Li J, Duan C, Yao F (2013) Langmuir 29:8076–8085
- 47.
Heath DE, Cooper SL (2012) Acta Biomater 8:2899–2910
- 48.
Zhang J, Xu S, Kumacheva E (2004) J Am Chem Soc 126:7908–7914
- 49.
Ajmal M, Siddiq M, Al-Lohedan H, Sahiner N (2014) RSC Adv 4:59562–59570
- 50.
Gulati U, Rajesh UC, Rawat DS, Zaleski JM (2020) Green Chem 22:3170–3177
Acknowledgement
This work was supported by the Special Scientific Research Project of Shaanxi Education Department (Nos:19JK0904, 18JK1194) and Science Research Foundation of Xijing University (Nos: XJ18T03, XJ18B05).
Author information
Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhu, Y., Xu, G., Song, W. et al. Cu2O Nanocatalysts Immobilized on p(SBMA) for Synergistic CO2 Activation to Afford Esters and Heterocycles at Ambient Pressure. Catal Lett (2021). https://doi.org/10.1007/s10562-020-03518-z
Received:
Accepted:
Published:
Keywords
- Nano catalyst
- Cu2O
- Green chemistry
- Carbon dioxide