Cu2O Nanocatalysts Immobilized on p(SBMA) for Synergistic CO2 Activation to Afford Esters and Heterocycles at Ambient Pressure

Abstract

Herein, we report a chemoselective insertion of CO2 into unsaturated alkyne substrates under ambient conditions, which is achieved over poly (sulfobetain methacrylate) (p(SBMA)) supported Cu2O nanocatalyst (Cu2O/p(SBMA)) and a series of 3a,4-dihydronaphtho[2,3-c]furan-1(3H)-ones, can be obtained in excellent yields. Cu2O/p(SBMA) presents high performance for environment pressure activation and interpolation of CO2 into unsaturated alkyne substrates. This provides an attainable and competent catalyst for interpolation of CO2 into aryl alkynes, and binding allylic chlorides through SN2 mechanism in order to produce efficient ester and lactone heterocycles that are supposed to have favorable utilizations. All in all, these findings signify practical methods of hybrid catalyst development for detailed alterations, including CO2 employment in a green and sustainable manner.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    He Z, Xia Y, Tang B, Jiang X, Su J (2016) Mater Lett 184:148–151

    CAS  Article  Google Scholar 

  2. 2.

    Li H, Su Z, Hu S, Yan Y (2017) Appl Catal B 207:134–142

    CAS  Article  Google Scholar 

  3. 3.

    Scuderi V, Amiard G, Boninelli S, Scalese S, Miritello M, Sberna PM, Impellizzeri G, Privitera V (2016) Mater Sci Semicond Process 42:89–93

    CAS  Article  Google Scholar 

  4. 4.

    Nielsen DU, Hu XM, Daasbjerg K, Skrydstrup T (2018) Nat Catal 1:244–254

    CAS  Article  Google Scholar 

  5. 5.

    Peter SC (2018) ACS Energy Lett 3:1557–1561

    CAS  Article  Google Scholar 

  6. 6.

    Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J (2017) Nat Commun 8:15174

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Poliakoff M, Leitner W, Streng ES (2015) Faraday Discuss 183:9–17

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Aresta M, Tommasi I (1997) Energ Convers Manag 38:S373–S378

    CAS  Article  Google Scholar 

  9. 9.

    Clark JH (2006) Green Chem 8:17–21

    CAS  Article  Google Scholar 

  10. 10.

    Clark JH (1999) Green Chem 1:1–8

    CAS  Article  Google Scholar 

  11. 11.

    Sheldon RA (2007) Green Chem 9:1273–1283

    CAS  Article  Google Scholar 

  12. 12.

    Sheldon RA (2016) Green Chem 18:3180–3183

    CAS  Article  Google Scholar 

  13. 13.

    Huang K, Sun CL, Shi ZJ (2011) Chem Soc Rev 40:2435–2452

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Pinaka A, Vougioukalakis GC (2015) Coord Chem Rev 288:69–97

    CAS  Article  Google Scholar 

  15. 15.

    Yu D, Teong SP, Zhang Y (2015) Chem Rev 293–294:279–291

    Google Scholar 

  16. 16.

    Goeppert A, Czaun M, Jones JP (2014) Chem Soc Rev 43:7995–8048

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Peppel W (1958) J Ind Eng Chem 50:767–770

    CAS  Article  Google Scholar 

  18. 18.

    Shaikh AAG, Sivaram S (1996) Chem Rev 96:951–976

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    North M, Pasquale R (2009) Angew. Chem Int Ed 48:2946–2948

    CAS  Article  Google Scholar 

  20. 20.

    Yan P, Jing HW (2009) Adv Synth Catal 351:1325–1332

    CAS  Article  Google Scholar 

  21. 21.

    Baba A, Nozaki T, Matsuda H (1987) Bull Chem Soc Jpn 60:1552–1554

    CAS  Article  Google Scholar 

  22. 22.

    North M, Young C (2011) Catal Sci Technol 1:93–99

    CAS  Article  Google Scholar 

  23. 23.

    Supasitmongkol S, Styring P (2014) Catal Sci Technol 4:1622–1630

    CAS  Article  Google Scholar 

  24. 24.

    Elmas S, Subhani MA, Harrer M, Leitner W, Sundermeyer J, Mueller TE (2014) Catal Sci Technol 4:1652–1657

    CAS  Article  Google Scholar 

  25. 25.

    Pena Carrodeguas L, Gonzalez-Fabra J, Castro-Gomez F, Bo C (2015) Chem Eur J 21:6115–6122

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Montoya CA, Paninho AB, Felix PM, Zakrzewska ME, Vital J, Najdanovic-Visak V, Nunes AVM (2015) J Supercrit Fluid 100:155–159

    CAS  Article  Google Scholar 

  27. 27.

    Macherla VR, Liu J, Sunga M, White DJ, Grodberg J, Teisan S, Lam KS, Potts BC (2007) J Nat Prod 70:1454–1457

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Katayama S, Myoga A, Akahori Y (1992) J Phys Chem 96:4698–4701

    CAS  Article  Google Scholar 

  29. 29.

    Zhao Y, Chen W, Yang Y, Yang X, Xu H (2007) Colloid Polym Sci 285:1395–1400

    CAS  Article  Google Scholar 

  30. 30.

    Mohan YM, Geckeler KE (2007) React Funct Polym 67:144–155

    CAS  Article  Google Scholar 

  31. 31.

    Das M, Kumacheva E (2006) Colloid Polym Sci 284:1073–1084

    CAS  Article  Google Scholar 

  32. 32.

    Georgiev GS, Kamenska EB, Vassileva ED, Kamenova IP, Georgieva VT, Iliev SB, Ivanov IA (2006) Biomacromol 7:1329–1334

    CAS  Article  Google Scholar 

  33. 33.

    Kamenova I, Harrass M, Lehmann B, Friedrich K, Ivanov I, Georgiev G (2007) Macromol Symp 254:122–127

    CAS  Article  Google Scholar 

  34. 34.

    Das M, Sanson N, Kumacheva E (2008) Chem Mater 20:7157–7163

    CAS  Article  Google Scholar 

  35. 35.

    Chen SF, Zheng J, Li LY, Jiang SY (2005) J Am Chem Soc 127:14473–14478

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Vogler EA (1998) Adv Colloid Interface Sci 74:69–117

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: anintroduction to materials in medicine. Academic Press, San Diego, pp 59–65

    Google Scholar 

  38. 38.

    Shih YJ, Chang Y (2010) Langmuir 26:17286–17294

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Zhang Z, Chen SF, Chang Y, Jiang SY (2006) J Phys Chem B 110:10799–10804

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Zhang Z, Chao T, Chen SF, Jiang SY (2006) Langmuir 22:10072–10077

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Ladd J, Zhang Z, Chen SF, Hower JC, Jiang SY (2008) Biomacromol 9:1357–1361

    CAS  Article  Google Scholar 

  42. 42.

    Cheng G, Zhang Z, Chen SF, Bryers JD, Jiang SY (2007) Biomaterials 28:4192–4199

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Zhang Z, Zhang M, Chen SF, Horbett TA, Ratner BD, Jiang SY (2008) Biomaterials 29:4285–4291

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Zhang Z, Chao T, Liu LY, Cheng G, Ratner BD, Jiang SY (2009) J Biomat Sci Polym E 20:1845–1859

    CAS  Article  Google Scholar 

  45. 45.

    Chang Y, Chen SF, Zhang Z, Jiang SY (2006) Langmuir 22:2222–2226

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Tian M, Wang J, Zhang E, Li J, Duan C, Yao F (2013) Langmuir 29:8076–8085

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Heath DE, Cooper SL (2012) Acta Biomater 8:2899–2910

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Zhang J, Xu S, Kumacheva E (2004) J Am Chem Soc 126:7908–7914

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Ajmal M, Siddiq M, Al-Lohedan H, Sahiner N (2014) RSC Adv 4:59562–59570

    CAS  Article  Google Scholar 

  50. 50.

    Gulati U, Rajesh UC, Rawat DS, Zaleski JM (2020) Green Chem 22:3170–3177

    CAS  Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Special Scientific Research Project of Shaanxi Education Department (Nos:19JK0904, 18JK1194) and Science Research Foundation of Xijing University (Nos: XJ18T03, XJ18B05).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yanfang Zhu or Seyed Mohsen Sadeghzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Xu, G., Song, W. et al. Cu2O Nanocatalysts Immobilized on p(SBMA) for Synergistic CO2 Activation to Afford Esters and Heterocycles at Ambient Pressure. Catal Lett (2021). https://doi.org/10.1007/s10562-020-03518-z

Download citation

Keywords

  • Nano catalyst
  • Cu2O
  • Green chemistry
  • Carbon dioxide