Production of Gaseous Olefins from Syngas over a Cobalt-HZSM-5 Catalyst

Abstract

Light olefins (C2–C5) are high-value platform chemicals used to produce plastics, lubricants, coating material, and surfactants, and can be intermediates to produce transportation fuels. In this study we report on the development of a Co-based catalyst for direct conversion of fossil as well as biomass derived syngas into light olefins that enables high conversion and olefin/paraffin (O/P) product ratio, minimal selectivity to CO2 (< 1%) and wax formation (C14+ selectivity < 1%). Over a Co/HZSM-5 bi-functional catalyst 38% CO conversion with C2–C5 olefin selectivity of 48%, and O/P ratio of 4.0 was achieved at 240 °C, 17 bar, and 1.5 L/(g–h). In addition to a gaseous olefin-rich stream a C6–C13 mixed olefin/paraffin liquid byproduct was also produced with 25% selectivity. Both Co loading and the HZSM-5 acidity levels were optimized to maintain the balance between the hydrogenation and the cracking activity to generate high levels of C2–C4 olefins. A suite of catalyst characterization tools were used to correlate the physical and chemical property of the catalyst to the performance of the catalyst towards syngas conversion and C2–C4 olefin selectivity.

Graphic Abstract

Direct conversion of syngas into specialty chemicals (light/gaseous olefins) as well as liquid hydrocarbons over cobalt-HZSM-5 catalysts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Peacock D, Majid A, Gaffney G (2015) Unconventional resources: the next generation. Assessing coal to liquids, oil shale, underground coal gasification, microbial coal conversion and other technologies within the SPE-PRMS, in SPE/IATMI Asia pacific oil & gas conference and exhibition. Society of Petroleum Engineers, Nusa Dua

    Google Scholar 

  2. 2.

    Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    CAS  PubMed  Google Scholar 

  3. 3.

    Tan ECD et al (2017) Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading. Biofuels Bioprod Biorefin 11(1):41–66

    CAS  Google Scholar 

  4. 4.

    Smith C et al (2016) Conversion of syngas-derived C2+ mixed oxygenates to C3–C5olefins over ZnxZryOzmixed oxide catalysts. Catal Sci Technol 6(7):2325–2336

    CAS  Google Scholar 

  5. 5.

    Dagle RA et al (2020) Ethanol as a renewable building block for fuels and chemicals. Ind Eng Chem Res 59:4843

    CAS  Google Scholar 

  6. 6.

    Subramaniam S et al (2020) Direct catalytic conversion of ethanol to C5+ ketones: role of Pd–Zn alloy on catalytic activity and stability. Angew Chem Int Ed. https://doi.org/10.1002/anie.202005256

    Article  Google Scholar 

  7. 7.

    Urban B et al (2017) Flash pyrolysis of oleaginous biomass in a fluidized-bed reactor. Energy Fuels 31(8):8326–8334

    CAS  Google Scholar 

  8. 8.

    Maddi B, Viamajala S, Varanasi S (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresour Technol 102(23):11018–11026

    CAS  PubMed  Google Scholar 

  9. 9.

    Maddi B et al (2016) Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae. Biomass Bioenerg 93:122–130

    CAS  Google Scholar 

  10. 10.

    Dagle VL et al (2016) Integrated process for the catalytic conversion of biomass-derived syngas into transportation fuels. Green Chem 18(7):1880–1891

    CAS  Google Scholar 

  11. 11.

    Ramasamy KK et al (2015) Direct syngas hydrogenation over a Co-Ni bimetallic catalyst: Process parameter optimization. Chem Eng Sci 135:266–273

    CAS  Google Scholar 

  12. 12.

    Mapamba LS, Conradie FH, Fick JIJ (2016) Technology assessment of plasma arc reforming for greenhouse gas mitigation: a simulation study applied to a coal to liquids process. J Clean Prod 112:1097–1105

    CAS  Google Scholar 

  13. 13.

    Griffin DW, Schultz MA (2012) Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes. Environ Prog Sustain Energy 31(2):219–224

    CAS  Google Scholar 

  14. 14.

    Qiu T et al (2017) SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel 203(Supplement C):811–816

    CAS  Google Scholar 

  15. 15.

    Torres Galvis HM, de Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3(9):2130–2149

    CAS  Google Scholar 

  16. 16.

    Li J et al (2018) Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology. Nat Catal 1(10):787–793

    CAS  Google Scholar 

  17. 17.

    Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer−Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107(5):1692–1744

    CAS  PubMed  Google Scholar 

  18. 18.

    Hodala JL et al (2016) Hydrocracking of FT-wax to fuels over non-noble metal catalysts. Fuel 185:339–347

    CAS  Google Scholar 

  19. 19.

    Rafati M et al (2017) Techno-economic analysis of production of Fischer-Tropsch liquids via biomass gasification: the effects of Fischer-Tropsch catalysts and natural gas co-feeding. Energy Convers Manag 133:153–166

    CAS  Google Scholar 

  20. 20.

    Lu Y et al (2017) Fischer-Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst. Fuel 193:369–384

    CAS  Google Scholar 

  21. 21.

    Bruijnincx PCA, Weckhuysen BM (2013) Shale gas revolution: an opportunity for the production of biobased chemicals? Angew Chem Int Ed 52(46):11980–11987

    CAS  Google Scholar 

  22. 22.

    Zhao Z-J, Chiu C-C, Gong J (2015) Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts. Chem Sci 6(8):4403–4425

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Chowdhury AD et al (2014) Towards a practical development of light-driven acceptorless alkane dehydrogenation. Angew Chem 126(25):6595–6599

    Google Scholar 

  24. 24.

    Torres Galvis HM et al (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335(6070):835–838

    CAS  PubMed  Google Scholar 

  25. 25.

    Kang S-H et al (2010) ZSM-5 supported iron catalysts for Fischer-Tropsch production of light olefin. Fuel Process Technol 91(4):399–403

    CAS  Google Scholar 

  26. 26.

    Zhai P et al (2016) Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew Chem Int Ed 55(34):9902–9907

    CAS  Google Scholar 

  27. 27.

    Murugesan V et al (2019) Thermally activated nucleation and growth of cobalt and nickel oxide nanoparticles on porous silica. J Vacuum Sci Technol A 37(3):031101

    Google Scholar 

  28. 28.

    Zhang G, Scott BL, Hanson SK (2012) Mild and homogeneous cobalt-catalyzed hydrogenation of C=C, C=O, and C=N bonds. Angew Chem 124(48):12268–12272

    Google Scholar 

  29. 29.

    Zhong L et al (2016) Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538(7623):84–87

    CAS  PubMed  Google Scholar 

  30. 30.

    Zhao Z et al (2018) Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas. ACS Catal 8(1):228–241

    CAS  Google Scholar 

  31. 31.

    Jiao F et al (2016) Selective conversion of syngas to light olefins. Science 351(6277):1065–1068

    CAS  PubMed  Google Scholar 

  32. 32.

    Sartipi S et al (2014) Insights into the catalytic performance of mesoporous H-ZSM-5-supported cobalt in Fischer-Tropsch synthesis. ChemCatChem 6(1):142–151

    CAS  Google Scholar 

  33. 33.

    Sartipi S et al (2013) Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: Advantages, limitations, and mechanistic insight. J Catal 305:179–190

    CAS  Google Scholar 

  34. 34.

    Subramanian V et al (2016) The role of steric effects and acidity in the direct synthesis of iso-paraffins from syngas on cobalt zeolite catalysts. ChemCatChem 8(2):380–389

    CAS  Google Scholar 

  35. 35.

    Sartipi S et al (2013) Breaking the Fischer-Tropsch synthesis selectivity: direct conversion of syngas to gasoline over hierarchical Co/H-ZSM-5 catalysts. Catal Sci Technol 3(3):572–575

    CAS  Google Scholar 

  36. 36.

    Brosius R, Fletcher JCQ (2014) Hydrocracking under Fischer-Tropsch conditions; the effect of CO on the mass transfer resistance by metal clusters. J Catal 317:318–325

    CAS  Google Scholar 

  37. 37.

    Rahimi N, Karimzadeh R (2011) Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Appl Catal A 398(1):1–17

    CAS  Google Scholar 

  38. 38.

    Mochizuki H et al (2012) Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Appl Catal A 449:188–197

    CAS  Google Scholar 

  39. 39.

    Blay V et al (2017) Engineering zeolites for catalytic cracking to light olefins. ACS Catal 7:6542–6566

    CAS  Google Scholar 

  40. 40.

    Davis BH (2001) Fischer-Tropsch synthesis: current mechanism and futuristic needs. Fuel Process Technol 71(1):157–166

    CAS  Google Scholar 

  41. 41.

    Udaya V, Rao S, Gormley RJ (1990) Bifunctional catalysis in syngas conversions. Catal Today 6(3):207–234

    CAS  Google Scholar 

  42. 42.

    Meusinger J et al (1994) Cracking of n-heptane on metal-free H-ZSM-5 zeolite at high hydrogen pressure. J Catal 148(1):30–35

    CAS  Google Scholar 

  43. 43.

    Lin Q et al (2016) Insights into the promotional roles of palladium in structure and performance of cobalt-based zeolite capsule catalyst for direct synthesis of C5–C11 iso-paraffins from syngas. J Catal 344:378–388

    CAS  Google Scholar 

  44. 44.

    Bessell S (1993) Support effects in cobalt-based fischer-tropsch catalysis. Appl Catal A 96(2):253–268

    CAS  Google Scholar 

  45. 45.

    Xing C et al (2015) Tunable isoparaffin and olefin synthesis in Fischer-Tropsch synthesis achieved by composite catalyst. Fuel Process Technol 136:68–72

    CAS  Google Scholar 

  46. 46.

    Davidson SD, Sun J, Wang Y (2016) The effect of ZnO addition on H2O activation over Co/ZrO2 catalysts. Catal Today 269:140–147

    CAS  Google Scholar 

  47. 47.

    Dehghan R et al (2011) In-Situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopy. Catal Lett 141(6):754

    CAS  Google Scholar 

  48. 48.

    Storsæter S et al (2005) Characterization of alumina-, silica-, and titania-supported cobalt Fischer-Tropsch catalysts. J Catal 236(1):139–152

    Google Scholar 

  49. 49.

    Zhao W et al (2015) The influence of hierarchical zeolite composition and pore structure on behavior of cobalt-based Fischer-Tropsch synthesis catalysts. J Porous Mater 22(4):1097–1104

    CAS  Google Scholar 

  50. 50.

    Steen EV et al (1996) TPR study on the preparation of impregnated Co/SiO2catalysts. J Catal 162(2):220–229

    Google Scholar 

  51. 51.

    Kang S-H et al (2014) Fischer-Tropsch synthesis of the promoted Co/ZSM-5 hybrid catalysts for the production of gasoline range hydrocarbons. Modern Res Catal 03(03):8

    Google Scholar 

  52. 52.

    Xiong H et al (2005) Catalytic performance of zirconium-modified Co/Al2O3 for Fischer-Tropsch synthesis. J Mol Catal A Chem 231(1):145–151

    CAS  Google Scholar 

  53. 53.

    Santos VP et al (2015) Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nat Commun 6:6451

    CAS  PubMed  Google Scholar 

  54. 54.

    Bukur DB et al (1997) Effect of process conditions on olefin selectivity during conventional and supercritical Fischer−Tropsch synthesis. Ind Eng Chem Res 36(7):2580–2587

    CAS  Google Scholar 

  55. 55.

    Muleja AA et al (2017) Variation of the Short-Chain Paraffin And Olefin Formation Rates With Time For A Cobalt Fischer-Tropsch catalyst. Ind Eng Chem Res 56(2):469–478

    CAS  Google Scholar 

  56. 56.

    Ma W-P, Ding Y-J, Lin L-W (2004) Fischer−Tropsch synthesis over activated-carbon-supported cobalt catalysts: effect of Co loading and promoters on catalyst performance. Ind Eng Chem Res 43(10):2391–2398

    CAS  Google Scholar 

  57. 57.

    Ordomsky VV et al (2017) Soldering of iron catalysts for direct synthesis of light olefins from syngas under mild reaction conditions. ACS Catal 7:6445–6452

    CAS  Google Scholar 

  58. 58.

    Tian Z et al (2017) Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method. Appl Catal A 541(2):50–59

    CAS  Google Scholar 

  59. 59.

    Meusinger J, Corma A (1995) Activation of hydrogen on zeolites: kinetics and mechanism of n-heptane cracking on H-ZSM-5 zeolites under high hydrogen pressure. J Catal 152(1):189–197

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan K. Ramasamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 242 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maddi, B., Davidson, S., Job, H. et al. Production of Gaseous Olefins from Syngas over a Cobalt-HZSM-5 Catalyst. Catal Lett 151, 526–537 (2021). https://doi.org/10.1007/s10562-020-03324-7

Download citation

Keywords

  • Syngas hydrogenation
  • Unconventional fossil feedstocks
  • Biofuels
  • Cobalt
  • Zeolite
  • Applied catalysis