Oxidative Dehydrogenation of Propane over Ni–Al Mixed Oxides: Effect of the Preparation Methods on the Activity of Surface Ni(II) Species

Abstract

4Ni–Al layered double hydroxide (LDH) precursors were prepared by the following three methods: constant pH coprecipitation, variable pH coprecipitation and urea hydrolysis. The 4Ni–Al mixed metal oxide (MMO) catalysts were obtained by the calcination of LDH precursors at 600 °C, and their catalytic performances in ODHP from 350 to 550 °C were tested. The 4Ni–Al MMO from the urea hydrolysis method showed a higher and more stable propylene selectivity of ca. 40% with propylene yield of ca.11% at 500 °C, and that from the constant pH coprecipitation method was followed, while oxidative cracking of propane occurred on the 4Ni–Al MMO from the variable pH coprecipitation method. It is considered to be closely related to the dispersion and stability of the surface Ni(II) species through comprehensive analysis of XRD, N2-adsorption-desorption, TEM, XPS, H2-TPR and In-situ electrical conductivity. The urea hydrolysis method with a low salt concentration, leading to an excellent stability of the surface Ni(II) species at high reaction temperature, should be selected to prepare Ni–Al MMO catalysts for ODHP instead of the traditional variable pH coprecipitation method with a high salt concentration.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Fan XQ, Liu DD, Zhao Z, Li JM, Liu J (2020) Catal Today 339:67–78

    CAS  Google Scholar 

  2. 2.

    Wang L, Chu W, Jiang CF, Liu YF, Wen J, Xie ZK (2012) J Nat Gas Chem 21:43–48

    Google Scholar 

  3. 3.

    Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613–10653

    CAS  PubMed  Google Scholar 

  4. 4.

    Védrine JC, Fechet I (2016) C R Chimie 19:1203–1225

    Google Scholar 

  5. 5.

    Rostom S, de Lasa HI (2017) Ind Eng Chem Res 56:13109–13124

    CAS  Google Scholar 

  6. 6.

    Fang KG, Liu LL, Zhang MW, Zhao L, Zhou J, Li WB, Mu XL, Yang C (2018) Catalysts 8:19–30

    Google Scholar 

  7. 7.

    Grabowski R (2006) Catal Rev 48:199–268

    CAS  Google Scholar 

  8. 8.

    Li ZY, Peters AW, Platero-Prats AE, Liu J, Kung CW, Noh H, De Stefano MR, Schweitzer NM, Chapman KW, Hupp JT, Farha OK (2017) J Am Chem Soc 139:15251–15258

    CAS  PubMed  Google Scholar 

  9. 9.

    Sun M, Zhang J, Putaj P, Caps V, Lefebvre F, Pelletier J, Basset JM (2014) Chem Rev 114:981–1019

    CAS  PubMed  Google Scholar 

  10. 10.

    Vedrine JC (2016) J Energy Chem 25:936–946

    Google Scholar 

  11. 11.

    D’Alnoncourt RN, Csepei LI, Hävecker M, Girgsdies F, Schuster ME, Schlögl R, Trunschke A (2014) J Catal 311:369–385

    Google Scholar 

  12. 12.

    Liu QL, Li JM, Zhao Z, Gao ML, Kong L, Liu J, Wei YC (2016) J Catal 344:38–52

    CAS  Google Scholar 

  13. 13.

    Xie QH, Zhang HM, Kang JC, Cheng J, Zhang QH, Wang Y (2018) ACS Catal 8:4902–4916

    CAS  Google Scholar 

  14. 14.

    Dula R, Wcisło K, Stoch J, Grzybowska B, Serwicka EM, Kooli F, Bahranowski K, Gaweł A (2002) Appl Catal A 230:281–291

    CAS  Google Scholar 

  15. 15.

    Smoláková L, Čapek L, Botková Š, Kovanda F, Bulánek R, Pouzar M (2011) Top Catal 54:1151–1162

    Google Scholar 

  16. 16.

    Valverde JA, Echavarría A, Ribeiro MF, Palacio LA, Eon JG (2012) Catal Today 192:36–43

    CAS  Google Scholar 

  17. 17.

    Huang MX, Wu X, Yi XD, Han GB, Xia WS, Wan HL (2017) RSC Adv 7:14846–14856

    CAS  Google Scholar 

  18. 18.

    Álvarez MG, Urdă A, Rives V, Carrazán SR, Martín C, Tichit D, Marcu IC (2018) C R Chimie 21:210–220

    Google Scholar 

  19. 19.

    Mitran G, Cacciaguerra T, Loridant S, Tichit D, Marcu IC (2012) Appl Catal A 417:153–162

    Google Scholar 

  20. 20.

    Skoufa Z, Xantri G, Heracleous E, Lemonidou AA (2014) Appl Catal A 471:107–117

    CAS  Google Scholar 

  21. 21.

    Xu M, Wei M (2018) Adv Funct Mater 28:1802943–1802962

    Google Scholar 

  22. 22.

    Lv Z, Duan X (2008) Chin J Catal 29:839–856

    Google Scholar 

  23. 23.

    Zhao SZ, Yi HH, Tang XL, Kang DJ, Gao FY, Wang JG, Huang YH, Yang ZY (2018) J Hazard Mater 344:797–810

    CAS  PubMed  Google Scholar 

  24. 24.

    Lin GH, Zhu L, Duan T, Zhang L, Liu B, Lei JH (2019) Chem Eng J 378:122181–122188

    CAS  Google Scholar 

  25. 25.

    Jing C, Huang YC, Xia LH, Chen YX, Wang X, Liu XY, Dong BQ, Dong F, Li SC, Zhang YX (2019) Appl Surf Sci 496:143700–143709

    CAS  Google Scholar 

  26. 26.

    Li T, Miras HN, Song YF (2017) Catalysts 7:260–276

    Google Scholar 

  27. 27.

    Munonde TS, Zheng H, Nomngongo PN (2019) Ultrason Sonochem 59:104716–104724

    CAS  PubMed  Google Scholar 

  28. 28.

    Seida Y, Nakano Y, Nakamura Y (2002) Clay Miner 50:525–532

    CAS  Google Scholar 

  29. 29.

    Milagres JL, Bellato CR, Ferreira SO, Guimarães LDM, Tonon GJDP, Bolandini A (2019) Colloids Surf A 582:123890–123901

    CAS  Google Scholar 

  30. 30.

    Bendinelli EV, Aoki IV, Barcia O, Margarit-Mattos ICP (2019) Mater Chem Phys 238:121883–121893

    CAS  Google Scholar 

  31. 31.

    Zhaorigetu B, Li WZ, Xu HY, Kieffer R (2004) Catal Lett 94:125–129

    Google Scholar 

  32. 32.

    Zhao L, Li X, Quan X, Chen GH (2011) Environ Sci Technol 45:5373–5379

    CAS  PubMed  Google Scholar 

  33. 33.

    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Pure Appl Chem 87:1051–1069

    CAS  Google Scholar 

  34. 34.

    Kovanda F, Rojka T, Bezdička P, Jirátová K, Obalová L, Pacultová K, Bastl Z, Grygar T (2009) J Solid State Chem 182:27–36

    CAS  Google Scholar 

  35. 35.

    Zhao L, Duan J, Yang SW, Li XY, Liu QF, Martyniuk CJ (2018) Sep Purif Technol 207:231–239

    CAS  Google Scholar 

  36. 36.

    Rotan M, Tolchard J, Rytter E, Einarsrud MA, Grande T (2009) J Solid State Chem 182:3412–3415

    CAS  Google Scholar 

  37. 37.

    Jitianu M, Balastu M, Marchidan R, Zaharescu M, Crisan D, Craiu M (2000) Int J Inorg Mater 2:287–300

    CAS  Google Scholar 

  38. 38.

    Huang PP, Cao CY, Wei F, Sun YB, Song WG (2015) RSC Adv 5:10412–10417

    CAS  Google Scholar 

  39. 39.

    Duan X, Evans DG (2006) Layered Double Hydroxides, 1st edn. Publisher, Springer, pp 1–87

    Google Scholar 

  40. 40.

    Zhang T, Li QR, Xiao HY, Lu HX, Zhou YM (2012) Ind Eng Chem Res 51:11490–11498

    CAS  Google Scholar 

  41. 41.

    Solsona B, Nieto JML, Concepción P, Dejoz A, Ivars F, Vazquez MI (2011) J Catal 280:28–39

    CAS  Google Scholar 

  42. 42.

    Solsona B, Concepción P, Demicol B, Hernández S, Delgado JJ, Calvino JJ, Nieto JML (2012) J Catal 295:104–114

    CAS  Google Scholar 

  43. 43.

    Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) J Catal 231:159–171

    CAS  Google Scholar 

  44. 44.

    Biju V, Khadar MA (2002) J Nanopart Res 4:247–253

    CAS  Google Scholar 

  45. 45.

    Van Veenendaal MA, Alders D, Sawatzky GA (1995) Phys Rev B 51:13966–13971

    Google Scholar 

  46. 46.

    Alders D, Voogt FC, Hibma T, Sawatzky GA (1996) Phys Rev B 54:7716–7719

    CAS  Google Scholar 

  47. 47.

    Van Veenendaal MA, Sawatzky GA (1993) Phys Rev Lett 70:2459–2462

    PubMed  Google Scholar 

  48. 48.

    Wang J, Lang XJ, Zhaorigetu B, Jia ML, Wang J, Guo XF, Zhao JC (2014) ChemCatChem 6:1737–1747

    CAS  Google Scholar 

  49. 49.

    Ivan ŞB, Popescu I, Fechete I, Garin F, Pârvulescu VI, Marcu IC (2016) Catal Sci Technol 6:6953–6964

    CAS  Google Scholar 

  50. 50.

    Popescu I, Heracleous E, Skoufa Z, Lemonidou A, Marcu IC (2014) Phys Chem Chem Phys 16:4962–4970

    CAS  PubMed  Google Scholar 

  51. 51.

    Skoufa Z, Heracleous E, Lemonidou AA (2015) J Catal 322:118–129

    CAS  Google Scholar 

  52. 52.

    Popescu I, Skoufa Z, Heracleous E, Lemonidou AA, Marcu IC (2015) Phys Chem Chem Phys 17:8138–8147

    CAS  PubMed  Google Scholar 

  53. 53.

    Herrmann JM, Vernoux P, Béré KE, Abon M (1997) J Catal 167:106–117

    CAS  Google Scholar 

  54. 54.

    Millet JMM (2006) Top Catal 38:83–92

    CAS  Google Scholar 

  55. 55.

    Mars P, Van Krevelen DW (1954) Chem Eng Sci 3:41–59

    CAS  Google Scholar 

  56. 56.

    Skoufa Z, Heracleous E, Lemonidou AA (2012) Catal Today 192:169–176

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Collaborative Innovation Center for Water Environmental Security of Inner Mongolia Autonomous Region (XTCX003), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2019MS02016), the University Science Research Project of Inner Mongolia Autonomous Region of China (NJZY19024) and Inner Mongolia Normal University Graduate Student’ Research & Innovation Fund (CXJJS18084).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1173 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Wang, J., Xu, A. et al. Oxidative Dehydrogenation of Propane over Ni–Al Mixed Oxides: Effect of the Preparation Methods on the Activity of Surface Ni(II) Species. Catal Lett 151, 497–506 (2021). https://doi.org/10.1007/s10562-020-03317-6

Download citation

Keywords

  • Heterogeneous catalysis
  • Alkanes
  • Oxidative dehydrogenation
  • Deactivation
  • Activation energy