Copper(II)-Ethanolamine Triazine Complex on Chitosan-Functionalized Nanomaghemite for Catalytic Aerobic Oxidation of Benzylic Alcohols

Abstract

In this study a novel, effective and recoverable Cu(II)-catalyst was synthesized by incorporating of Cu(OAc)2 within ethanolamine-triazine derivative (TAETA) attached to chitosan (Chs)-functionalized γ-Fe2O3 nanoparticles [MNP@Chs/TAETA-Cu(II)]. It was characterized by different techniques such as FT-IR, EDS, ICP, TEM, TGA and VSM. The as-prepared nanocomposite demonstrated high oxidation activity and desired selectivity in the aerobic oxidation of structurally diverse set of benzyl alcohols. Spectral results and leaching experiments revealed that this magnetically recoverable heterogeneous catalyst preserved its structure after it was reused several times. This protocol offers some beneficial features such as the use of oxygen as an ideal oxidant, stability of nanocomplex, easily catalyst separation by using an external magnetic field and efficient recycling as well as the lack of by-products.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8
Fig. 9

References

  1. 1.

    Musawir M, Davey PN, Kelly G, Kozhevnikov IV (2003) Highly efficient liquid-phase oxidation of primary alcohols to aldehydes with oxygen catalysed by Ru–Co oxide. Chem Commun. https://doi.org/10.1039/B212585B

    Article  Google Scholar 

  2. 2.

    Guo Z, Liu B, Zhang Q et al (2014) Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem Soc Rev 43:3480–3524

    CAS  PubMed  Google Scholar 

  3. 3.

    Sheldon RA, Arends IWCE, ten Brink G-J, Dijksman A (2002) Green, catalytic oxidations of alcohols. Acc Chem Res 35:774–781

    CAS  PubMed  Google Scholar 

  4. 4.

    Lou J-D, Xu Z-N (2002) Selective oxidation of primary alcohols with chromium trioxide under solvent free conditions. Tetrahedron Lett 43:6095–6097

    CAS  Google Scholar 

  5. 5.

    Taylor RJK, Reid M, Foot J, Raw SA (2005) Tandem oxidation processes using manganese dioxide: discovery, applications, and current studies. Acc Chem Res 38:851–869

    CAS  PubMed  Google Scholar 

  6. 6.

    Uyanik M, Ishihara K (2009) Hypervalent iodine-mediated oxidation of alcohols. Chem Commun. https://doi.org/10.1039/B823399C

    Article  Google Scholar 

  7. 7.

    Tojo G, Fernández MI (2006) Oxidation of alcohols to aldehydes and ketones: a guide to current common practice. Springer Science & Business Media, New York

    Google Scholar 

  8. 8.

    Parmeggiani C, Cardona F (2012) Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem 14:547–564

    CAS  Google Scholar 

  9. 9.

    Parmeggiani C, Matassini C, Cardona F (2017) A step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supports. Green Chem 19:2030–2050

    CAS  Google Scholar 

  10. 10.

    Velusamy S, Punniyamurthy T (2004) Novel vanadium-catalyzed oxidation of alcohols to aldehydes and ketones under atmospheric oxygen. Org Lett 6:217–219

    CAS  PubMed  Google Scholar 

  11. 11.

    Sharma VB, Jain SL, Sain B (2003) Cobalt phthalocyanine catalyzed aerobic oxidation of secondary alcohols: an efficient and simple synthesis of ketones. Tetrahedron Lett 44:383–386

    CAS  Google Scholar 

  12. 12.

    Sun X, Li X, Song S et al (2015) Mn-catalyzed highly efficient aerobic oxidative hydroxyazidation of olefins: a direct approach to β-azido alcohols. J Am Chem Soc 137:6059–6066

    CAS  PubMed  Google Scholar 

  13. 13.

    Martín SE, Suárez DF (2002) Catalytic aerobic oxidation of alcohols by Fe(NO3)3-FeBr3. Tetrahedron Lett 43:4475–4479

    Google Scholar 

  14. 14.

    Xu B, Lumb J-P, Arndtsen BA (2015) A TEMPO-free copper-catalyzed aerobic oxidation of alcohols. Angew Chemie 127:4282–4285

    Google Scholar 

  15. 15.

    Velusamy S, Ahamed M, Punniyamurthy T (2004) Novel polyaniline-supported molybdenum-catalyzed aerobic oxidation of alcohols to aldehydes and ketones. Org Lett 6:4821–4824

    CAS  PubMed  Google Scholar 

  16. 16.

    Schultz MJ, Hamilton SS, Jensen DR, Sigman MS (2005) Development and comparison of the substrate scope of Pd-catalysts for the aerobic oxidation of alcohols. J Org Chem 70:3343–3352

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Personick ML, Zugic B, Biener MM et al (2015) Ozone-activated nanoporous gold: a stable and storable material for catalytic oxidation. ACS Catal 5:4237–4241

    CAS  Google Scholar 

  18. 18.

    McCann SD, Stahl SS (2015) Copper-catalyzed aerobic oxidations of organic molecules: pathways for two-electron oxidation with a four-electron oxidant and a one-electron redox-active catalyst. Acc Chem Res 48:1756–1766

    CAS  PubMed  Google Scholar 

  19. 19.

    Wendlandt AE, Suess AM, Stahl SS (2011) Copper-catalyzed aerobic oxidative C-H functionalizations: trends and mechanistic insights. Angew Chemie Int Ed 50:11062–11087

    CAS  Google Scholar 

  20. 20.

    Saberikia I, Safaei E, Karimi B, Lee Y-I (2017) A novel copper complex of proline-based mono (phenol) amine ligand (Hlpro) immobilized in SBA-15 as a model catalyst of galactose oxidase. ChemistrySelect 2:11164–11171

    CAS  Google Scholar 

  21. 21.

    Jiang N, Ragauskas AJ (2005) Copper(II)-catalyzed aerobic oxidation of primary alcohols to aldehydes in ionic liquid [bmpy] PF6. Org Lett 7:3689–3692

    CAS  PubMed  Google Scholar 

  22. 22.

    Hoover JM, Steves JE, Stahl SS (2012) Copper(I)/TEMPO-catalyzed aerobic oxidation of primary alcohols to aldehydes with ambient air. Nat Protoc 7:1161

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Gamba I, Mutikainen I, Bouwman E et al (2013) Synthesis and characterization of copper complexes of a tetrapyridyl ligand, and their use in the catalytic aerobic oxidation of benzyl alcohol. Eur J Inorg Chem 2013:115–123

    CAS  Google Scholar 

  24. 24.

    Hill NJ, Hoover JM, Stahl SS (2012) Aerobic alcohol oxidation using a copper(I)/TEMPO catalyst system: a green, catalytic oxidation reaction for the undergraduate organic chemistry laboratory. J Chem Educ 90:102–105

    Google Scholar 

  25. 25.

    Ryland BL, Stahl SS (2014) Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems. Angew Chemie Int Ed 53:8824–8838

    CAS  Google Scholar 

  26. 26.

    Ansari IA, Gree R (2002) TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes and ketones in ionic liquid [bmim][PF6]. Org Lett 4:1507–1509

    CAS  PubMed  Google Scholar 

  27. 27.

    Liu Z, Shen Z, Zhang N et al (2018) Aerobic oxidation of alcohols catalysed by Cu(I)/NMI/TEMPO system and its mechanistic insights. Catal Lett 148:2709–2718

    CAS  Google Scholar 

  28. 28.

    Fernandes AE, Riant O, Jonas AM, Jensen KF (2016) One “click” to controlled bifunctional supported catalysts for the Cu/TEMPO-catalyzed aerobic oxidation of alcohols. RSC Adv 6:36602–36605

    CAS  Google Scholar 

  29. 29.

    Wang L, Bie Z, Shang S et al (2018) Cu-catalyzed aerobic oxidation of alcohols with a multi-functional NMI-TEMPO. ChemistrySelect 3:3386–3390

    CAS  Google Scholar 

  30. 30.

    Lagerspets E, Lagerblom K, Heliövaara E et al (2019) Schiff base Cu(I) catalyst for aerobic oxidation of primary alcohols. Mol Catal 468:75–79

    CAS  Google Scholar 

  31. 31.

    Feng X, Lv P, Sun W et al (2017) Reduced graphene oxide-supported Cu nanoparticles for the selective oxidation of benzyl alcohol to aldehyde with molecular oxygen. Catal Commun 99:105–109

    CAS  Google Scholar 

  32. 32.

    Polshettiwar V, Luque R, Fihri A et al (2011) Magnetically recoverable nanocatalysts. Chem Rev 111:3036–3075

    CAS  PubMed  Google Scholar 

  33. 33.

    Ranganath KVS, Glorius F (2011) Superparamagnetic nanoparticles for asymmetric catalysis–a perfect match. Catal Sci Technol 1:13–22

    CAS  Google Scholar 

  34. 34.

    Lim CW, Lee IS (2010) Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today 5:412–434

    CAS  Google Scholar 

  35. 35.

    Saiyed ZM, Sharma S, Godawat R et al (2007) Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3O4). J Biotechnol 131:240–244

    CAS  PubMed  Google Scholar 

  36. 36.

    Jafarpour M, Rezaeifard A, Yasinzadeh V, Kargar H (2015) Starch-coated maghemite nanoparticles functionalized by a novel cobalt Schiff base complex catalyzes selective aerobic benzylic C-H oxidation. RSC Adv 5:38460–38469

    CAS  Google Scholar 

  37. 37.

    Cuong ND, Hoa TT, Khieu DQ et al (2012) Synthesis, characterization, and comparative gas-sensing properties of Fe2O3 prepared from Fe3O4 and Fe3O4-chitosan. J Alloys Compd 523:120–126

    Google Scholar 

  38. 38.

    Al-Sagheer FA, Merchant S (2011) Visco-elastic properties of chitosan-titania nano-composites. Carbohydr Polym 85:356–362

    CAS  Google Scholar 

  39. 39.

    Hoover JM, Ryland BL, Stahl SS (2013) Copper/TEMPO-catalyzed aerobic alcohol oxidation: mechanistic assessment of different catalyst systems. ACS Catal 3:2599–2605

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Duan RF, Cheng L, Zhang QC et al (2015) Mechanistic insight into the aerobic oxidation of benzyl alcohol catalyzed by the Cu II-TEMPO catalyst in alkaline water solution. RSC Adv 5:83976–83984

    CAS  Google Scholar 

  41. 41.

    Hossain MM, Shyu S-G (2010) Efficient and selective aerobic alcohol oxidation catalyzed by copper(II)/2,2,6,6,-tetramethylpiperidine-1-oxyl at room temperature. Adv Synth Catal 352:3061–3068

    CAS  Google Scholar 

  42. 42.

    Zhu X, Yang D, Wei W et al (2014) Magnetic copper ferrite nanoparticles/TEMPO catalyzed selective oxidation of activated alcohols to aldehydes under ligand-and base-free conditions in water. RSC Adv 4:64930–64935

    CAS  Google Scholar 

  43. 43.

    Samanta S, Das S, Samanta PK et al (2013) A mononuclear copper(II) complex immobilized in mesoporous silica: an efficient heterogeneous catalyst for the aerobic oxidation of benzylic alcohols. RSC Adv 3:19455–19466

    CAS  Google Scholar 

  44. 44.

    Herbert M, Montilla F, Galindo A (2010) Supercritical carbon dioxide, a new medium for aerobic alcohol oxidations catalysed by copper-TEMPO. Dalton Trans 39:900–907

    CAS  PubMed  Google Scholar 

  45. 45.

    Pan S, Yan S, Osako T, Uozumi Y (2018) Controlled aerobic oxidation of primary benzylic alcohols to aldehydes catalyzed by polymer-supported triazine-based dendrimer-copper composites. Synlett 29:1152–1156

    CAS  Google Scholar 

  46. 46.

    Zhao H, Chen Q, Wei L et al (2015) A highly efficient heterogeneous aerobic alcohol oxidation catalyzed by immobilization of bipyridine copper(I) complex in MCM-41. Tetrahedron 71:8725–8731

    CAS  Google Scholar 

  47. 47.

    Li L, Matsuda R, Tanaka I et al (2014) A crystalline porous coordination polymer decorated with nitroxyl radicals catalyzes aerobic oxidation of alcohols. J Am Chem Soc 136:7543–7546

    CAS  PubMed  Google Scholar 

  48. 48.

    Ahmad JU, Figiel PJ, Räisänen MT et al (2009) Aerobic oxidation of benzylic alcohols with bis (3,5-di-tert-butylsalicylaldimine) copper(II) complexes. Appl Catal A 371:17–21

    CAS  Google Scholar 

  49. 49.

    Albadi J, Alihoseinzadeh A, Mansournezhad A (2015) Aerobic oxidation of alcohols catalyzed by a new ZnO-supported copper oxide nanocatalyst in aqueous media. Synth Commun 45:877–885

    CAS  Google Scholar 

  50. 50.

    Taher A, Kim DW, Lee I-M (2017) Highly efficient metal organic framework (MOF)-based copper catalysts for the base-free aerobic oxidation of various alcohols. RSC Adv 7:17806–17812

    CAS  Google Scholar 

  51. 51.

    Kim BR, Oh JS, Kim J, Lee CY (2015) Aerobic oxidation of alcohols over copper-containing metal-organic frameworks. Bull Korean Chem Soc 36:2799–2800

    CAS  Google Scholar 

  52. 52.

    Li J, Gao H, Tan L et al (2016) Superparamagnetic core-shell metal-organic framework Fe3O4/Cu3(BTC)2 microspheres and their catalytic activity in the aerobic oxidation of alcohols and olefins. Eur J Inorg Chem 2016:4906–4912

    CAS  Google Scholar 

Download references

Acknowledgements

Support for this work by Research Council of University of Birjand is highly appreciated.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Maasoumeh Jafarpour or Abdolreza Rezaeifard.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasanpour, B., Jafarpour, M., Feizpour, F. et al. Copper(II)-Ethanolamine Triazine Complex on Chitosan-Functionalized Nanomaghemite for Catalytic Aerobic Oxidation of Benzylic Alcohols. Catal Lett 151, 45–55 (2021). https://doi.org/10.1007/s10562-020-03298-6

Download citation

Keywords

  • Aerobic oxidation
  • Copper catalyst
  • Magnetically heterogeneous catalyst
  • TEMPO