Pt1.4Ni(100) Tetrapods with Enhanced Oxygen Reduction Reaction Activity

Abstract

Precisely tuning structure and selectively exposing active surfaces of Pt-based alloys are critical to improving the utilization of precious Pt and promoting electrocatalytic performance. It is worth noting that (100) facets of Pt alloys are universally recognized as less active towards the oxygen reduction reaction (ORR). Herein, a simple and mild approach is proposed to prepare Pt1.4Ni tetrapods (PtNi-TPs) whose surface is predominantly covered by (100) facets via simultaneously reducing the Ni and Pt precursors. In spite of the large proportion of exposed (100) facets, the Pt1.4Ni tetrapods show superior electrocatalytic activity, demonstrating an enhanced ORR mass activity of 1.23 A mg−1Pt and specific activity of 2.01 mA cm−2, which are 12.6- and 17.2-fold higher than those of commercial Pt/C catalysts, respectively. Density function theory calculations suggest that the incorporation of Ni can weaken Pt-OH overbinding effect on the (100) facets, promoting hydrogenation of *OH. The free energy changes in the potential-limiting step demonstrate that the (100) facets are more active. This work is expected to provide new view on the rational designing of nanocatalysts facets.

Graphic Abstract

Pt1.4Ni tetrapods enclosed by (100) facets as efficient oxygen reduction reaction catalysts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Debe MK (2012) Nature 486:43

    CAS  Article  Google Scholar 

  2. 2.

    Liu Y, Gokcen D, Bertocci U, Moffat TP (2012) Science 338:1327

    CAS  Article  Google Scholar 

  3. 3.

    Shao M, Chang Q, Dodelet JP, Chenitz R (2016) Chem Rev 116:3594

    CAS  Article  Google Scholar 

  4. 4.

    Cheng N, Zhang L, Mi S, Jiang H, Hu Y, Jiang H, Li C (2018) ACS Appl Mater Interfaces 10:38015

    CAS  Article  Google Scholar 

  5. 5.

    Huang X, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Wang YM (2015) Science 348:1230

    CAS  Article  Google Scholar 

  6. 6.

    Bruijn FAD, Dam VAT, Janssen GJM (2008) Fuel Cells 8:3

    Article  Google Scholar 

  7. 7.

    Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M (2014) Science 343:1339

    CAS  Article  Google Scholar 

  8. 8.

    Wang X, Choi SI, Roling LT, Luo M, Ma C, Zhang L, Chi M, Liu J, Xie Z, Herron JA (2015) Nat Commun 6:7594

    Article  Google Scholar 

  9. 9.

    Li HH, Ma SY, Fu QQ, Liu XJ, Wu L, Yu SH (2015) J Am Chem Soc 137:7862

    CAS  Article  Google Scholar 

  10. 10.

    Bu L, Guo S, Zhang X, Shen X, Su D, Lu G, Zhu X, Yao J, Guo J, Huang X (2016) Nat Commun 7:11850

    CAS  Article  Google Scholar 

  11. 11.

    Cui C, Gan L, Heggen M, Rudi S, Strasser P (2013) Nat Mater 12:765

    CAS  Article  Google Scholar 

  12. 12.

    Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) J Am Chem Soc 128:8813

    CAS  Article  Google Scholar 

  13. 13.

    Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, Disalvo FJ, Abruña HD (2013) Nat Mater 12:81

    CAS  Article  Google Scholar 

  14. 14.

    Bu L, Zhang N, Guo S, Zhang X, Li J, Yao J, Wu T, Lu G, Ma JY, Su D (2016) Science 354:1410

    CAS  Article  Google Scholar 

  15. 15.

    Bu L, Shao Q, Bin E, Guo J, Yao J, Huang X (2017) J Am Chem Soc 139:9576

    CAS  Article  Google Scholar 

  16. 16.

    Zhang L, Roling LT, Wang X, Vara M, Chi M, Liu J, Choi SI, Park J, Herron JA, Xie Z (2015) Science 349:412

    CAS  Article  Google Scholar 

  17. 17.

    Cheng N, Zhang L, Jiang H, Zhou Y, Yu S, Chen L, Jiang H, Li C (2019) Nanoscale 11:16945

    CAS  Article  Google Scholar 

  18. 18.

    Xu GR, Bai J, Yao L, Xue Q, Jiang JX, Zeng JH, Chen Y, Lee JM (2016) ACS Catal 7:452

    Article  Google Scholar 

  19. 19.

    Wu Y, Wang D, Niu Z, Chen P, Zhou G, Li Y (2012) Angew Chem Int Ed 51:12524

    CAS  Article  Google Scholar 

  20. 20.

    Luo MC, Qin YN, Li MG, Sun YJ, Li CJ, Li YJ, Yang Y, Lv F, Wu D, Zhou P, Guo SJ (2020) Sci Bull 65:97

    CAS  Article  Google Scholar 

  21. 21.

    Becknell N, Kang YJ, Chen C (2015) J Am Chem Soc 137:15817

    CAS  Article  Google Scholar 

  22. 22.

    Maksimuk S, Teng X, Yang H (2006) Phys Chem Chem Phys 8:4660

    CAS  Article  Google Scholar 

  23. 23.

    Teng X, Yang H (2005) Nano Lett 5:885

    CAS  Article  Google Scholar 

  24. 24.

    Maksimuk S, Teng X, Yang H (2013) J Phys Chem C 111:14312

    Article  Google Scholar 

  25. 25.

    Marković NM, Adžić RR, Cahan BD, Yeager EB (1994) J Electroanal Chem 377:249

    Article  Google Scholar 

  26. 26.

    Kuzume A, Herrero E, Feliu JM (2007) J Electroanal Chem 599:333

    CAS  Article  Google Scholar 

  27. 27.

    Marković NM, Jr PNR (2001) Surf Sci Rep 45:117

  28. 28.

    Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Science 315:493

    CAS  Article  Google Scholar 

  29. 29.

    Aricò AS, Shukla AK, Kim H, Park S, Antonucci V (2001) Appl Surf Sci 172:33

    Article  Google Scholar 

  30. 30.

    Ji X, Lee KT, Holden R, Zhang L, Nazar LF (2010) Nat Chem 2:286

    CAS  Article  Google Scholar 

  31. 31.

    Xu XL, Zhang X, Sun H, Yang Y, Dai XP, Gao JS, Li XY, Zhang PF, Wang HH, Yu NF, Sun SG (2014) Angew Chem Int Ed 126:12730

    Article  Google Scholar 

  32. 32.

    Zhu J, Yang Y, Chen LX, Xiao WP, Liu HF, AbruñA HCD, Wang DL (2018) Chem Mater 30:5987

    CAS  Article  Google Scholar 

  33. 33.

    Xiao W, Cordeiro MAL, Gong M, Han L, Jie W, Bian C, Jing Z, Xin HL, Wang D (2017) J Mater Chem A 5:9867

    CAS  Article  Google Scholar 

  34. 34.

    Zhuang Y, Chou JP, Liu PY, Chen TY, Kai JJ, Hu A, Chen HYT (2018) J Mater Chem A 6:23326

    CAS  Article  Google Scholar 

  35. 35.

    Michaelides A, Hu P (2001) J Chem Phys 114:513

    CAS  Article  Google Scholar 

  36. 36.

    Koper MTM, Shubina TE, Santen RAV (2002) J Phys Chem B 106:686

    CAS  Article  Google Scholar 

  37. 37.

    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886

    Article  Google Scholar 

  38. 38.

    Luo MC, Sun YJ, Zhang X, Qin YN, Li MQ, Li YJ, Li CJ, Yang Y, Wang L, Gao P, Lu G, Guo SJ (2018) Adv Mater 30:1705515

    Article  Google Scholar 

  39. 39.

    Li HD, Pan Y, Zhang D, Han Y, Wang ZC, Qin YN, Lin SY, Wu XK, Zhao H, Lai JP, Huang BL, Wang L (2020) J Mater Chem A 8:2323

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21838003, 91834301), the Shanghai Scientific and Technological Innovation Project (18JC1410600, 19JC1410400), the Social Development Program of Shanghai (17DZ1200900), the Innovation Program of Shanghai Municipal Education Commission, and the Fundamental Research Funds for the Central Universities (222201718002).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Haibo Jiang or Chunzhong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2794 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Cheng, N., Yu, S. et al. Pt1.4Ni(100) Tetrapods with Enhanced Oxygen Reduction Reaction Activity. Catal Lett (2020). https://doi.org/10.1007/s10562-020-03286-w

Download citation

Keywords

  • Tetrapods
  • Pt1.4Ni(100)
  • Electrocatalysis
  • Oxygen reduction reaction
  • Free energy