Synergistic Catalytic Effect of N-Hydroxyphthalimide/Cobalt Tetraamide Phthalocyanine and Its Application for Aerobic Oxidation of Hydrocarbons and Alcohols


The activation of oxygen for selective oxidation of organic molecules, such as hydrocarbons and alcohols, remains a major catalytic challenge. We have developed a catalytic system combining N-hydroxyphthalimide (NHPI) with cobalt tetraamide phthalocyanine [CoPc(CONH2)4] for the oxidation of hydrocarbons and alcohols at 75 °C under an oxygen atmosphere. CoPc(CONH2)4 was synthesized by trimellitic anhydride-urea method, and its structure was confirmed by FT-IR, UV–Vis and XRD. This catalyst, in synergy with NHPI/O2 system, exhibited excellent catalytic ability and high selectivity in the oxidation of hydrocarbons and alcohols. Based on the experimental results, a reasonable reaction mechanism was proposed for the oxidation of alkanes and alcohols, respectively.

Graphic Abstract

Cobalt tetraamide phthalocyanine (CoPc(CONH2)4) was synthesized by a simple solid-thermal method, and the synergistic catalysis oxidation of NHPI and CoPc(CONH2)4 was studied. A synergistic catalysis system for the aerobic oxidation of hydrocarbons and alcohols by N-hydroxyphthalimide combined with cobalt tetraamide phthalocyanine has been developed.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Scheme 2


  1. 1.

    Coseri S (2009) Phthalimide-N-oxyl (PINO) radical, a powerful catalytic agent: its generation and versatility towards various organic substrates. Catal Rev 51:218–292

    CAS  Google Scholar 

  2. 2.

    Duman S, Cakmak Y, Kolemen S, Akkaya EU, Dede Y (2012) Heavy atom free singlet oxygen generation: doubly substituted configurations dominate S1 states of bis-BODIPYs. J Org Chem 77:4516–4527

    CAS  PubMed  Google Scholar 

  3. 3.

    Widmann D, Behm R (2014) Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc Chem Res 47:740–749

    CAS  PubMed  Google Scholar 

  4. 4.

    Tangeysh B, Metiu H, Gordon MJ, McFarland EW (2019) Molecular oxygen activation on suspended doped cerium (IV) oxide particles in molten chloride salts. Catal Lett.

    Article  Google Scholar 

  5. 5.

    Kholdeeva OA, Zalomaeva OV (2016) Recent advances in transition-metal-catalyzed selective oxidation of substituted phenols and methoxyarenes with environmentally benign oxidants. Coord Chem Rev 306:302–330

    CAS  Google Scholar 

  6. 6.

    Neumann R (2010) Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg Chem 49:3594–3601

    CAS  PubMed  Google Scholar 

  7. 7.

    Faraji AR, Mosazadeh S, Ashouri F (2017) Synthesis and characterization of cobalt-supported catalysts on modified magnetic nanoparticle: green and highly efficient heterogeneous nanocatalyst for selective oxidation of ethylbenzene, cyclohexene and oximes with molecular oxygen. J Colloid Interface Sci 506:10–26

    CAS  PubMed  Google Scholar 

  8. 8.

    Wong A, Lanza MRV, Sotomayor MDPT (2013) Sensor for diuron quantitation based on the P450 biomimetic catalyst nickel (II) 1,4,8,11,15,18,22,25-octabutoxy-29H, 31H-phthalocyanine. J Electroanal Chem 690:83–88

    CAS  Google Scholar 

  9. 9.

    Safari N, Bahadoran F (2001) Cytochrome P-450 model reactions: a kinetic study of epoxidation of alkenes by iron phthalocyanine. J Mol Catal A: Chem 171:115–121

    CAS  Google Scholar 

  10. 10.

    Voronina A, Filippova A, Vashurin A, Pukhovskaya S, Shaposhnikov G, Golubchikov O (2015) Self-association of sulfo derivatives of cobalt phthalocyaninates in the presence of 1,4-diazabicyclo [2.2.2] octane. Russ J Gen Chem 85:1713–1720

    CAS  Google Scholar 

  11. 11.

    Tamura R, Kawata T, Hattori Y, Kobayashi N, Kimura M (2017) Catalytic oxidation of thiols within cavities of phthalocyanine network polymers. Macromolecules 50:7978–7983

    CAS  Google Scholar 

  12. 12.

    Luo R, Lin X, Lu J, Zhou X, Ji H (2017) Zinc phthalocyanine as an efficient catalyst for halogen-free synthesis of formamides from amines via carbon dioxide hydrosilylation under mild conditions. Chin J Catal 38:1382–1389

    CAS  Google Scholar 

  13. 13.

    Torres T, Ferreira JT, Pina J, Ribeiro CA, Fernandes R, Tomé JP, Rodriguez-Morgade MS (2019) Highly efficient singlet oxygen generators based in ruthenium phthalocyanines: synthesis, characterization and in vitro evaluation for photodynamic therapy. Chemistry.

    Article  PubMed  Google Scholar 

  14. 14.

    Tripathi D, Negi H, Singh RK, Singh UP, Srivastava VC (2019) Synthesis of N-benzylated cobalt phthalocyaninetetrasulfonamide and its application in oxidative desulfurization catalysis. J Coord Chem 72:2982–2996

    CAS  Google Scholar 

  15. 15.

    Huang C, Liu R, Yang W, Zhang C, Zhu H (2017) Iron(II) phthalocyanine immobilized SBA-15 catalysts: preparation, characterization and application for toluene selective aerobic oxidation. Inorg Chim Acta 467:307–315

    CAS  Google Scholar 

  16. 16.

    Palewska K, Sworakowski J, Lipiński J (2012) Molecular aggregation in soluble phthalocyanines–chemical interactions vs. π-stacking. Opt Mater 34:1717–1724

    CAS  Google Scholar 

  17. 17.

    Hou K, Huang L, Qi Y, Huang C, Pan H, Du M (2015) A bisphenol A sensor based on novel self-assembly of zinc phthalocyanine tetrasulfonic acid-functionalized graphene nanocomposites. Mat Sci Eng R 49:640–647

    CAS  Google Scholar 

  18. 18.

    Yeganeh AD, Amini MM, Safari N (2019) In situ synthesis and encapsulation of copper phthalocyanine into MIL-101 (Cr) and MIL-100 (Fe) pores and investigation of their catalytic performance in the epoxidation of styrene. J Porphyr Phthalocyanines 23:1118–1131

    CAS  Google Scholar 

  19. 19.

    Sun XL, Chen P (2009) Progress on the catalytic epoxidation of cyclohexene. Chem World

  20. 20.

    Sun XL, Wang L, Tan Z (2015) Improved synthesis of soluble metal-free/metal phthalocyanine tetracarboxylic acids and their application in the catalytic epoxidation of cyclohexene. Catal Lett 145:1094–1102

    CAS  Google Scholar 

  21. 21.

    Niu F, Jiang Y, Chen P, Zhan L, Sun XL (2019) Green synthesis of hydratropic aldehyde from α-methylstyrene catalyzed by Al2O3-supported metal phthalocyanines. Green Process Synth 8:100–107

    CAS  Google Scholar 

  22. 22.

    Ishii Y, Sakaguchi S (2006) Recent progress in aerobic oxidation of hydrocarbons by N-hydroxyimides. Catal Today 117:105–113

    CAS  Google Scholar 

  23. 23.

    Iwahama T, Yoshino Y, Keitoku T, Sakaguchi S, Ishii Y (2000) Efficient oxidation of alcohols to carbonyl compounds with molecular oxygen catalyzed by N-hydroxyphthalimide combined with a Co species. J Org Chem 65:6502–6507

    CAS  PubMed  Google Scholar 

  24. 24.

    Miao C, Zhao H, Zhao Q, Xia C, Sun W (2016) NHPI and ferric nitrate: a mild and selective system for aerobic oxidation of benzylic methylenest. Catal Sci Technol 6:1378–1383

    CAS  Google Scholar 

  25. 25.

    Qiu H, Liang W, Zhang G, Lin M, Liu W, Gao Z, Wei W, Tang C, Jin H, Liang H (2018) Aerobic oxidation of methyl-substituted β-Carbolines catalyzed by N-hydroxyphthalimide and metal catalyst. Chemistryselect 3:12363–12366

    CAS  Google Scholar 

  26. 26.

    Lin R, Chen F, Jiao N (2012) Metal-free, NHPI catalyzed oxidative cleavage of C-C double bond using molecular oxygen as oxidant. Org Lett 14:4158–4161

    CAS  PubMed  Google Scholar 

  27. 27.

    Zhao H, Sun W, Miao C, Zhao Q (2014) Aerobic oxidation of secondary alcohols using NHPI and iron salt as catalysts at room temperature. Mol Catal A Chem 393:62–67

    Google Scholar 

  28. 28.

    Zhou WY, Chen DW, Cui AJ, Qian JF, He MY, Chen Q (2017) Aerobic oxidation of alcohols to carbonyl compounds catalyzed by N-hydroxyphthalimide (NHPI) combined with CoTPP-Zn2Al-LDH. J Chem Sci 129:295–299

    CAS  Google Scholar 

  29. 29.

    Saka ET, Acar I, Kantekin H, Kani İ (2013) Synthesis and characterization of peripheral and non-peripheral substituted Co (II) phthalocyanines and their catalytic activity in styrene oxidation. Synth Met 169:12–17

    CAS  Google Scholar 

  30. 30.

    Seoudi R, El-Bahy GS, El Sayed ZA (2005) FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes. J Mol Struct 753:119–126

    CAS  Google Scholar 

  31. 31.

    Andriianova AN, Mustafin AG, Abdrakhmanov IB (2019) Effect of cobalt phthalocyanine on synthesis and physicochemical properties of polyaniline. ChemistrySelect 4:11307–11314

    CAS  Google Scholar 

  32. 32.

    Shaabani A, Maleki-Moghaddam R, Maleki A, Rezayan A (2007) Microwave assisted synthesis of metal-free phthalocyanine and metallophthalocyanines. Dyes Pigments 74:279–282

    CAS  Google Scholar 

  33. 33.

    Cheng Z, Dai M, Quan X, Li S, Zheng D, Liu Y, Yao R (2019) Synthesis and catalytic activity of activated carbon supported sulfonated cobalt phthalocyanine in the preparation of dimethyl disulfide. Appl Sci 9:124

    CAS  Google Scholar 

  34. 34.

    Kumar A, Prajapati PK, Aathira M, Bansiwal A, Boukherroub R, Jain SL (2019) Highly improved photoreduction of carbon dioxide to methanol using cobalt phthalocyanine grafted to graphitic carbon nitride as photocatalyst under visible light irradiation. J Colloid Interface Sci 543:201–213

    CAS  PubMed  Google Scholar 

  35. 35.

    Lu M, Li B, Zhang Y, Liang Q, Li X, Xu S, Li Z (2018) Facile synthesis and characterization of a cobalt phthalocyanine sensitized SnIn4S8 composites toward enhanced photocatalytic activity. J Mater Sci 29:16680–16690

    CAS  Google Scholar 

  36. 36.

    Taha N, Sasson Y (2010) Superior performance of NHPI cocatalyst in the autoxidation of methylbenzenes under solvent-free phase transfer conditions. Org Process Res Dev 14:701–704

    CAS  Google Scholar 

  37. 37.

    Kuznetsova L, Kuznetsova N, Yakovina O, Zudin V, Bal’zhinimaev B (2018) Effect of transition metal compounds on the cyclohexene oxidation catalyzed by N-hydroxyphthalimide. Kinet Catal 59:735–743

    CAS  Google Scholar 

  38. 38.

    Yoshino Y, Hayashi Y, Iwahama T, Sakaguchi S, Ishii Y (1997) Catalytic oxidation of alkylbenzenes with molecular oxygen under normal pressure and temperature by N-hydroxyphthalimide combined with Co(OAc)2. J Org Chem 62:6810–6813

    CAS  Google Scholar 

  39. 39.

    Nutting JE, Rafiee M, Stahl SS (2018) Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and related N-Oxyl species: electrochemical properties and their use in electrocatalytic reactions. Cheml Rev 118:4834–4885

    CAS  Google Scholar 

  40. 40.

    Barbieri A, Lanzalunga O, Lapi A, Di Stefano S (2019) N-hydroxyphthalimide: a hydrogen atom transfer mediator in hydrocarbon oxidations promoted by nonheme lron(IV)-Oxo complexes. J Org Chem 84:13549–13556

    CAS  PubMed  Google Scholar 

  41. 41.

    Ishii Y, Sakaguchi S (1999) A new strategy for alkane oxidation with O2 using N-hydroxyphthalimide (NHPI) as a radical catalyst. Catal Surv Asia 3:27–35

    CAS  Google Scholar 

  42. 42.

    Jiang X, Xu X, Lin Y, Yan Y, Li P, Bai R, Xie Y (2018) A mild system for synthesis of aldoximes and ketoximes in the presence of N-hydroxyphthalimide in aqueous system. Tetrahedron 74:5879–5885

    CAS  Google Scholar 

  43. 43.

    Aoki Y, Sakaguchi S, Ishii Y (2004) Synthesis of naphthalenediols by aerobic oxidation of diisopropylnaphthalenes catalyzed by N-hydroxyphthalimide (NHPI)/α,α′-Azobisisobutyronitrile (AIBN). Adv Synth Catal 346:199–202

    CAS  Google Scholar 

  44. 44.

    Li ZH, Fiser B, Jiang BL, Li JW, Xu BH, Zhang SJ (2019) N-hydroxyphthalimide/benzoquinone-catalyzed chlorination of hydrocarbon C–H bond with N-chlorosuccinimide. Org Biomol Chem 17:3403–3408

    CAS  PubMed  Google Scholar 

  45. 45.

    Gunchenko PA, Li J, Liu B, Chen H, Pashenko AE, Bakhonsky VV, Zhuk TS, Fokin AA (2018) Aerobic oxidations with N-hydroxyphthalimide in trifluoroacetic acid. Mol Catal 447:72–79

    CAS  Google Scholar 

  46. 46.

    Wang L, Zhang Y, Du R, Yuan H, Wang Y, Yao J, Li H (2019) Selective one-step aerobic oxidation of cyclohexane to ε-caprolactone mediated by N-hydroxyphthalimide (NHPI). ChemCatChem 11:2260–2264

    CAS  Google Scholar 

  47. 47.

    Recupero F, Punta C (2007) Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide. Chem Rev 107:3800–3842

    CAS  PubMed  Google Scholar 

  48. 48.

    Zhou YL, Lin SS, Xia DH, Xiang YZ (2012) PTCs promoted biphasic oxidation of ethylbenzene catalyzed by NHPI and CoSPc. Chin Chem Lett 23:895–898

    CAS  Google Scholar 

  49. 49.

    Zhou W, Dai X, Chen Y, Sun F, He M, Chen Q (2018) Synergistic catalytic oxidation of ethylbenzene to acetophenone by metallophthalocyanine intercalated layered double hydroxide with Oxygen. ChemistrySelect 3:566–572

    CAS  Google Scholar 

  50. 50.

    Habibi D, Faraji A, Arshadi M, Heydari S, Gil A (2013) Efficient catalytic systems based on cobalt for oxidation of ethylbenzene, cyclohexene and oximes in the presence of N-hydroxyphthalimide. Appl Catal A Gen 466:282–292

    CAS  Google Scholar 

Download references


The authors are grateful for the funding support (LM 201666) of the Shanghai Alliance Program.

Author information



Corresponding author

Correspondence to Xiaoling Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, F., Tang, S., Tang, Z. et al. Synergistic Catalytic Effect of N-Hydroxyphthalimide/Cobalt Tetraamide Phthalocyanine and Its Application for Aerobic Oxidation of Hydrocarbons and Alcohols. Catal Lett 151, 17–26 (2021).

Download citation


  • N-hydroxyphthalimide
  • Cobalt tetraamide phthalocyanine
  • Oxidation
  • Synergistic catalytic effect