A Trimetallic Cu(II) Derivative as an Efficient and Stable Electrocatalyst for Reduction of Proton to Molecular Hydrogen


A trinuclear copper(II) complex, namely [Cu3(L)2(CF3COO)2] (1) is afforded integrating a ‘compartmental’ Schiff base, H2L [where H2L = N,N′-bis(salicylidene)-1,3-propanediamine] and fully characterized. Complex 1 is implemented for electrocatalytic proton reduction to originate molecular hydrogen in a homogenous system. The electrochemical study involving CV (cyclic voltammetry), CPE (controlled potential electrolysis) and GC (gas chromatography) reveals that in homogeneous system, 1 is highly active towards proton reduction in presence of trifluoro acetic acid as a proton source. Following CPE at − 1.8 V vs Ag/AgCl, the headspace gas is sampled and gas chromatography is carried out to quantify the amount of hydrogen discharged. The ratio of theoretical H2 production from charge aggregation during electrolysis to the practical amount of H2 resolved on GC is yielded a Faradaic efficiency value of 87%. Moreover, an extended bulk electrolysis experiment carried out for 35 h illustrates the presence of a stable catalytic system in which 230 C of charge is accumulated. As a consequence, this efficient and stable H2 evolution obtained using a Cu(II) derivative (CuII is cheap and earth abundant) has shown that the synthesis of judiciously designed copper complex is a promising strategy towards potential catalysts from proton reduction.

Graphic Abstract

Electrochemical and catalytic study of a trimetallic Cu(II) derivative in DMSO with the presence of trifluoroacetic acid as weak proton source shows the hydrogen evolution Faradaic efficiency as 87%. A continuous increment of the charge accumulation through time is observed, indicating the high stability of our catalyst under electrochemical H2 generation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Bigi JP, Hanna TE, Harman WH, Chang A, Chang CJ (2010) Chem Commun 46:958–960

    CAS  Google Scholar 

  2. 2.

    Zhao F, Zhang J, Abe T, Wöhrle D, Kaneko M (1999) J Mol Cat A: Chem 145:245–256

    CAS  Google Scholar 

  3. 3.

    Kellett RM, Spiro T (1985) Inorg Chem 24:2373–2377

    CAS  Google Scholar 

  4. 4.

    Fisher BJ, Eisenberg R (1980) J Am Chem Soc 102:7361–7363

    CAS  Google Scholar 

  5. 5.

    Beyene BB, Das K, Kerayu BA, Datta A, Hung CH (2019) Cat Commun 119:111–114

    CAS  Google Scholar 

  6. 6.

    Beyene BB, Mane SB, Leonardus M, Hung CH (2017) ChemistrySelect 2:10565–10571

    CAS  Google Scholar 

  7. 7.

    Beyene BB, Hung CH (2018) Electrocatalysis 9:689–696

    CAS  Google Scholar 

  8. 8.

    DiRisio RJ, Armstrong JE, Frank MA, Lake WR, McNamara WR (2017) Dalton Trans 46:10418–10425

    CAS  PubMed  Google Scholar 

  9. 9.

    Beyene BB, Mane SB, Hung CH (2015) Chem Commun 51:15067–15070

    CAS  Google Scholar 

  10. 10.

    Houlding V, Geiger T, Kolle U, Gratzel M (1982) J Chem Soc Chem Commun 12:681–683

    Google Scholar 

  11. 11.

    Koelle U, Paul S (1986) Inorg Chem 25:2689–2694

    CAS  Google Scholar 

  12. 12.

    Losse S, Vos JG, Rau S (2010) Coord Chem Rev 254:2492–2504

    CAS  Google Scholar 

  13. 13.

    Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Angew Chem Int Ed 50:7238–7266

    CAS  Google Scholar 

  14. 14.

    Jacobsen GM, Yang JY, Twamley B, Wilson AD, Bullock RM, DuBois MR, DuBois DL (2008) Energy Environ Sci 1:167–174

    CAS  Google Scholar 

  15. 15.

    Matsumura Y (2013) Int J Hydr Energy 38:13950–13960

    CAS  Google Scholar 

  16. 16.

    Datta A, Das K, Beyene BB, Gajewska MJ, Garribba E, Hung CH (2017) Mol Cat 439:81–90

    CAS  Google Scholar 

  17. 17.

    Felton GAN, Vannucci AK, Chen J, Lockett LT, Okumura N, Petro BJ, Zakai UI, Evans DH, Glass RS, Lichtenberger DL (2007) J Am Chem Soc 129:12521–12530

    CAS  PubMed  Google Scholar 

  18. 18.

    Darensbourg MY, Lyon EJ, Zhao X, Georgakaki IP (2003) Proc Nat Acad Sci 100:3683–3688

    CAS  PubMed  Google Scholar 

  19. 19.

    Tard C, Liu X, Ibrahim SK, Bruschi M, Gioia LD, Davies SC, Yang X, Wang LS, Sawers G, Pickett CJ (2005) Nature 433:610–613

    CAS  PubMed  Google Scholar 

  20. 20.

    Sun L, Åkermark B, Ott S (2005) Coord Chem Rev 249:1653–1663

    CAS  Google Scholar 

  21. 21.

    Kaur-Ghumaan S, Schwartz L, Lomoth R, Stein M, Ott S (2010) Angew Chem Int Ed 122:8207–8211

    Google Scholar 

  22. 22.

    Kaur-Ghumaan S, Schwartz L, Lomoth R, Stein M, Ott S (2010) Angew Chem Int Ed 49:8033–8036

    CAS  Google Scholar 

  23. 23.

    Mejia-Rodriguez R, Chong D, Reibenspies JH, Soriaga MP, Darensbourg MY (2004) J Am Chem Soc 126:12004–12014

    CAS  PubMed  Google Scholar 

  24. 24.

    Canaguier S, Artero V, Fontecave M (2008) Dalton Trans 3:315–325

    Google Scholar 

  25. 25.

    Dubois MR, Dubois DL (2009) Acc Chem Res 42:1974–1982

    PubMed  Google Scholar 

  26. 26.

    Dubois DL, Bullock RM (2011) Eur J Inorg Chem 2011:1017–1027

    Google Scholar 

  27. 27.

    Collin JP, Jouaiti A, Sauvage JP (1988) Inorg Chem 27:1986–1990

    CAS  Google Scholar 

  28. 28.

    Kilgore UJ, Roberts JAS, Pool DH, Appel AM, Stewart MP, Dubois MR, Dougherty WG, Kassel WS, Bullock RM, Dubois DL (2011) J Am Chem Soc 133:5861–5872

    CAS  PubMed  Google Scholar 

  29. 29.

    Helm ML, Stewart MP, Bullock RM, Dubois MR, Dubois DL (2011) Science 333:863–866

    CAS  PubMed  Google Scholar 

  30. 30.

    Natali M, Luisa A, Iengo E, Scandola F (2014) Chem Commun 50:1842–1844

    CAS  Google Scholar 

  31. 31.

    Baffert C, Artero V, Fontecave M (2007) Inorg Chem 46:1817–1824

    CAS  PubMed  Google Scholar 

  32. 32.

    Sun Y, Bigi JP, Piro NA, Tang ML, Long JR, Chang CJ (2011) J Am Chem Soc 133:9212–9215

    CAS  PubMed  Google Scholar 

  33. 33.

    Jacques PA, Artero V, Pécaut J, Fontecave M (2009) Proc Natl Acad Sci 106:20627–20632

    CAS  PubMed  Google Scholar 

  34. 34.

    Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Acc Chem Res 42:1995–2004

    CAS  PubMed  Google Scholar 

  35. 35.

    McNamara WR, Han Z, Alperin PJ, Brennessel WW, Holland PL, Eisenberg R (2011) J Am Chem Soc 133:15368–15371

    CAS  PubMed  Google Scholar 

  36. 36.

    Beyene BB, Mane SB, Hung CH (2018) J Electrochem Soc 165:H481–H487

    CAS  Google Scholar 

  37. 37.

    Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Angew Chem Int Ed 123:7376–7405

    Google Scholar 

  38. 38.

    Das K, Beyene BB, Datta A, Garribba E, Hung CH (2018) Cat Lett 148:2703–2708

    CAS  Google Scholar 

  39. 39.

    Beyene BB, Hung CH (2018) Sustain Energy Fuels 2:2036–2043

    CAS  Google Scholar 

  40. 40.

    Zhang P, Wang M, Yang Y, Yao T, Sun L (2014) Angew Chem Int Ed 53:13803–13807

    CAS  Google Scholar 

  41. 41.

    Zhao J, Tran PD, Chen Y, Loo JSC, Barber J, Xu ZJ (2015) ACS Cat 5:4115–4120

    CAS  Google Scholar 

  42. 42.

    Sirbu D, Turta C, Gibson EA, Benniston AC (2015) Dalton Trans 44:14646–14655

    CAS  PubMed  Google Scholar 

  43. 43.

    Du J, Wang J, Ji L, Xu X, Chen Z (2016) ACS Appl Mat Int 8:30205–30211

    CAS  Google Scholar 

  44. 44.

    Liu X, Cui S, Sun Z, Du P (2015) Chem Commun 51:12954–12957

    CAS  Google Scholar 

  45. 45.

    Vaduva CC, Vaszilcsin N, Kellenberger A, Medeleanu M (2011) Int J Hydrogen Energy 36:6994–7001

    CAS  Google Scholar 

  46. 46.

    Wang M, Chen L, Sun L (2012) Energy Env Science 5:6763–6778

    CAS  Google Scholar 

  47. 47.

    Solis BH, Yu Y, Hammes-Schiffer S (2013) Inorg Chem 52:6994–6999

    CAS  PubMed  Google Scholar 

  48. 48.

    Marinescu SC, Winkler JR, Gray HB (2012) Proc Nat Acad Sci USA 109:15127–15131

    CAS  PubMed  Google Scholar 

  49. 49.

    Bullock RM, Appel AM, Helm ML (2014) Chem Commun 50:3125–3127

    CAS  Google Scholar 

  50. 50.

    mL of a methanolic solution of Cu(CF3COO)2.4H2O (0.610 g, 2 mmol) were added to a a methanolic solution (10 mL) of [CuL] (1 mmol), under constant stirring. The resulting green solution was then kept boiling for 10 mins and then it was left undisturbed at room temperature. Dark-green square-shaped single crystals of 1 were generated after one week. These were separated by filtration and air-dried before X-ray diffraction analysis. Yield: 0.67 g. Anal. Calc. for C38H32N4O8F6Cu3: C, 46.66; H, 3.30; N, 5.73. Found: C, 46.89; H, 3.57; N, 5.59%.

  51. 51.

    Reglinski J, Morris S, Stevenson DE (2002) Polyhedron 21:2167–2174

    CAS  Google Scholar 

  52. 52.

    Rahaman SH, Ghosh R, Lu TH, Ghosh BK (2005) Polyhedron 24:1525–1532

    CAS  Google Scholar 

  53. 53.

    Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, theory and applications in inorganic chemistry, 5th edn. John Wiley and Sons Inc, New York

    Google Scholar 

  54. 54.

    Crystal structure determination for 1: C38H32O8N4F6Cu3 (M = 977.29), monoclinic, space group P21/c, a = 9.553(1) Å, b = 10.105(1) Å, c = 19.128(2) Å, β = 94.607(2), V = 1840.5(3) Å3, Z = 2, Dc = 1.763 g cm-3, μ(MoKα) = 1.809 mm-1, F(000) = 986, 24398 reflections measured, of which 4364 were observed (I %3e 2σ(I)), R1 = 0.0515, wR2 = 0.1428, 266 parameters. CCDC-1493436.

  55. 55.

    Das K, Datta A, Massera C, Roma-Rodrigues C, Barroso M, Baptista PV, Fernandes AR (2019) J Coord Chem 72:920–940

    CAS  Google Scholar 

  56. 56.

    Thakurta S, Chakraborty J, Rosair G, Tercero J, Fallah MSE, Garribba E, Mitra S (2008) Inorg Chem 47:6227–6235

    CAS  PubMed  Google Scholar 

  57. 57.

    Thakurta S, Rizzoli C, Butcher RJ, Gómez-García CJ, Garribba E, Mitra S (2010) Inorg Chim Acta 363:1395–1403

    CAS  Google Scholar 

  58. 58.

    Saha S, Sasmal A, Choudhury CR, Gomez-Garcia CJ, Garribba E, Mitra S (2014) Polyhedron 69:262–269

    CAS  Google Scholar 

  59. 59.

    Datta A, Das K, Mane SB, Mendiratta S, Fallah MSE, Garribba E, Bauzá A, Frontera A, Hung CH, Sinha C (2016) RSC Adv 6:54856–54865

    CAS  Google Scholar 

  60. 60.

    Frisch MR, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, VZakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery, Jr. JA,, JPeralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox, Gaussian DJ, Inc., Wallingford CT (2016)

  61. 61.

    Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  62. 62.

    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Google Scholar 

  63. 63.

    Barone V, In recent advances in density functional methods, Part I, Ed. D.P. Chong (World Scientific Publ. Co., Singapore, 1996).

Download references


KD expresses her appreciation to the SERB (Science and Engineering Research Board, India) Grant (PDF/2016/002832) for financial assistance. AD and CHH would like to express their appreciation to the Ministry of Science and Technology, Taiwan for financial assistance.

Author information



Corresponding authors

Correspondence to Amitabha Datta or Chen-Hsiung Hung.

Ethics declarations

Conflict of interest

All authors declare that thay have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 377 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, K., Beyene, B.B., Yibeltal, A.W. et al. A Trimetallic Cu(II) Derivative as an Efficient and Stable Electrocatalyst for Reduction of Proton to Molecular Hydrogen. Catal Lett 150, 2200–2207 (2020). https://doi.org/10.1007/s10562-020-03150-x

Download citation


  • Cu(ii) catalyst
  • Electrocatalytic
  • H2 evolution
  • CPE & GC
  • Faradic efficiency