Identification, Heterologous Expression and Characterization of a Transaminase from Rhizobium sp.


In present study, we have mined a transaminase (TA) from Rhizobium sp. from the pool of fully sequenced genomes by using an ω-TA sequence from Vibrio fluvialis JS17 as a template in a BLASTP search. The protein sequence of the TA from Rhizobium sp. exhibits 53% sequence identity to that from V. fluvialis. The TA with S-selectivity showed close evolutionary relationship with a pyruvate transaminase from Alcaligenes denitrificans Y2k-2 and an S-selective aminotransferase from Sphaerobacter thermophilus. The gene of the ω-TA was inserted into pET-28a and functionally expressed in E. coli BL21. Results showed that the recombinant ω-TA has a specific activity of 7.46 U/mg at pH 8.0, 30 ℃. The substrate specificity test found the ω-TA presented significant reactivity toward aromatic amino donors and amino acceptors containing aldehydes. More importantly, the ω-TA also exhibited a good affinity towards some cyclic substrates. The homology model of the ω-TA was built by Discovery Studio and docking was performed to describe the relative activity towards some substrates.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Rehn G, Adlercreutz P, Grey C (2014) Supported liquid membrane as a novel tool for driving the equilibrium of ω-transaminase catalyzed asymmetric synthesis. J Biotechnol 179:50–55.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Borrmann R, Koenigs R, Zoller J, Rueping M (2016) Asymmetric hydrogenation of cyclic imines and enamines: access to 1,5-benzodiazepine pharmacophores. Synthesis 49:310–318.

    CAS  Article  Google Scholar 

  3. 3.

    Höhne M, Bornscheuer UT (2009) Biocatalytic routes to optically active amines. Chem Cat Chem 1:42–51.

    CAS  Article  Google Scholar 

  4. 4.

    Simon RC, Richter N, Busto E, Kroutil W (2014) Recent developments of cascade reactions involving ω-transaminases. ACS Catal 4:129–143.

    CAS  Article  Google Scholar 

  5. 5.

    Guo F, Berglund P (2017) Transaminase biocatalysis: optimization and application. Green Chem 19:333–360.

    CAS  Article  Google Scholar 

  6. 6.

    Fuchs M, Farnberger E, Kroutil W (2015) The industrial age of biocatalytic transamination. Eur J Org Chem 32:6965–6982.

    CAS  Article  Google Scholar 

  7. 7.

    Dold SM, Syldatk C, Rudat J (2016) Transaminases and their applications. Green Biocatal.

    Article  Google Scholar 

  8. 8.

    Slabu I, Galman JL, Lloyd RC (2017) Discovery, engineering and synthetic application of transaminase biocatalysts. ACS Catal 7:8263–8284.

    CAS  Article  Google Scholar 

  9. 9.

    Fesko K, Steiner K, Breinbauer R, Schwab H, Schurmann M (2013) Investigation of one-enzyme systems in the ω-transaminase-catalyzed synthesis of chiral amines. J Mol Catal B 96:103–110.

    CAS  Article  Google Scholar 

  10. 10.

    Eliot AC, Kirsch JF (2004) Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem 73:383–415.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Toney MD (2014) Aspartate aminotransferase: an old dog teaches new tricks. Arch Biochem Biophys 544:119–127.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Bea H, Seo Y, Yun H (2011) Production of enantiomerically pure unnatural amino acids using ω-transaminase. Anal Bioanal Chem 407:2455–2462.

    CAS  Article  Google Scholar 

  13. 13.

    Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Koszelewski D, Lavandera I, Clay D, Rozzell D, Kroutil W (2008) Asymmetric synthesis of optically pure pharmacologically relevant amines employing ω-transaminases. Adv Synth Catal 350:2761–2766.

    CAS  Article  Google Scholar 

  15. 15.

    Shin JS, Kim BG (2001) Comparison of the ω-transaminases from different microorganisms and application to production of chiral amines Europe PMC. Biosci Biotechnol Biochem 2001:1782–1788

    Article  Google Scholar 

  16. 16.

    Mathew S, Nadarajan SP, Chung T, Park HH, Yun H (2016) Biochemical characterization of thermostable ω-transaminase from Sphaerobacter thermophilus and its application for producing aromatic β- and γ-amino acids. Enzyme Microb Technol 87–88:52–60.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Yun H, Lim S, Cho BK, Kim BG (2004) Amino acid: pyruvate transaminase from Alcaligenes denitrificans Y2k–2: a new catalyst for kinetic resolution of ω-amino acids and amines. Appl Environ Microb 70(4):2529–2534

    CAS  Article  Google Scholar 

  18. 18.

    Kelly SA, Skvortsov T, Magill D, Quinn DJ, McGrath JW, Allen CCR, Moody TS, Gilmore BF (2018) Characterization of a novel ω-transaminase from a triassic salt minemetagenome. Biochem Biophys Res Commun 503:2936–2942.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Ferrandi EE, Previdi A, Bassanini I, Riva S, Peng X, Monti D (2017) Novel thermostable amine transferases from hot spring metagenomes. Appl Microbiol Biotechnol 101:1–17.

    CAS  Article  Google Scholar 

  20. 20.

    Cho BK, Park HY, Seo JH, Kim J, Kang TJ, Lee BS, Kim BG (2007) Redesigning the substrate specificity of ω-aminotransferase for the kinetic resolution of aliphatic chiral amines. Biotechnol Bioeng 99:275–284.

    CAS  Article  Google Scholar 

  21. 21.

    Gao S, Su Y, Zhao L, Li G, Zheng G (2017) Characterization of a (R)-selective amine transaminase from Fusarium oxysporum Process. Biochem 63:130–136.

    CAS  Article  Google Scholar 

  22. 22.

    Zhu W, Li Y, Jia H, Wei P, Zhou H (2016) Expression, purification and characterization of a thermostable leucine dehydrogenase from the halophilic thermophile Laceyella sacchari. Biotechnol Lett 38:855–861.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Wu HL, Zhang JD, Zhang CF, Fan XJ, Chang HH, Wei WL (2017) Characterization of four new distinct ω-Transaminases from Pseudomonas putida NBRC 14164 for kinetic resolution of racemic amines and amino alcohols. Appl Biochem Biotechnol 181:972–985.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Shin J, Kim BG (2002) Exploring the active site of amine: pyruvate aminotransferase on the basis of the substrate structure-reactivity relationship: how the enzyme controls substrate specificity and stereoselectivity. J Org Chem 67:2848–2853.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Pavlidis IV, Wei MS, Genz M, Spurr P, Hanlon SP, Wirz B, Iding H, Bornscheuer U (2016) Identification of (s)-selective transaminases for the asymmetric synthesis of bulky chiral amines. Nat Chem.

    Article  PubMed  Google Scholar 

  26. 26.

    Kelly SA, Pohle S, Wharry S, Mix S, Allen CCR, Moody TS, Gilmore BF (2017) Application of ω-transaminases in the pharmaceutical industry. Chem Rev 118:349–367.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Mathew S, Deepankumar K, Shin G, Hong EY, Kim BG, Chunge T, Yun H (2016) Identification of novel thermostable ω-transaminaseand its application for enzymaticsynthesis of chiral amines at high temperature. RSC Adv 6:69257–69260.

    CAS  Article  Google Scholar 

  28. 28.

    Kaulmann U, Smithies K, Smith MEB, Hailes HC, Ward JM (2007) Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enzyme Microb Tech 41:628–637.

    CAS  Article  Google Scholar 

  29. 29.

    Cerioli L, Planchestainer M, Cassidy J, Tessaro D, Paradisi F (2015) Characterization of a novel amine transaminase from Halomonas elongate. J Mol Catal B 20:141–150.

    CAS  Article  Google Scholar 

  30. 30.

    Jiang J, Chen X, Feng J, Wu Q, Zhu D (2014) Substrate profile of an ω-transaminase from Burkholderia vietnamiensis and its potential for the production of optically pure amines and unnatural amino acids. J Mol Catal B 100:32–39.

    CAS  Article  Google Scholar 

  31. 31.

    Genz M, Melse O, Schmidt S, Vickers C, Bergh T, Joosten HJ, Bornscheuer UT (2016) Engineering the amine transaminase from vibrio fluvialis towards branched-chain substrates. Chem Cat Chem 9(20):3199–3202.

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the financial support from NSFC (21878155), Provincial Key R&D Plan of Jiangsu (BE2017703), PAPD, Qing Lan Project of Jiangsu Universities, Six Talent Peaks Project in Jiangsu Province, and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture.

Author information




K.X.T. conducted most of the experiments. Y.L. and H.H.J. designed and supervised the project. Y.F.Y performed activity assay and tested the related reactivity of substrates. All the authors discussed the design and results, commented on the manuscript, and approved the manuscript.

Corresponding authors

Correspondence to Honghua Jia or Yan Li.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, K., Yi, Y., Gao, Z. et al. Identification, Heterologous Expression and Characterization of a Transaminase from Rhizobium sp.. Catal Lett 150, 2415–2426 (2020).

Download citation


  • Transaminase
  • Rhizobium sp.
  • Characterization
  • Substrate specificity