Skip to main content

Advertisement

Log in

Selective Oxidation of 1,2-Propanediol to Lactic Acid Over Synergistic AuCu/TiO2 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This paper reported synergistic bimetallic AuCu/TiO2 catalysts for selective oxidation of 1,2-propanediol to lactic acid under very mild conditions (T < 90 °C, 1 MPa O2). The addition of Cu to monometallic Au/TiO2 catalyst leads to a twofold activity enhancement for Au catalysts (TOF: 11894 h−1) with good selectivity towards lactic acid (S > 92%). Surface characterization reveals that while AuCu forms alloy structure with larger particle size based on TEM images, strong interaction between Au and Cu species is critical for performance enhancement. According to experimental studies on the influence of 1,2-propanediol and NaOH concentration on reaction rates, it is highly possible that 1,2-propanediol is reacted following single-site Langmuir–Hinshelwood mechanism while NaOH acts as a promoter and may block surface sites under relatively higher concentration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zheng Y, Chen X, Shen Y (2008) Chem Rev 108:5253–5277

    Article  Google Scholar 

  2. Katryniok B, Kimura H, Skrzyńska E, Girardon J, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F (2011) Green Chem 13:1960

    Article  CAS  Google Scholar 

  3. Nishimura S, Ebitani K (2017) J Jpn Pet Inst 60:72–84

    Article  CAS  Google Scholar 

  4. Besson M, Gallezot P, Pinel C (2013) Chem Rev 114:1827–1870

    Article  Google Scholar 

  5. Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) J Radiat Res Appl Sci 7:222–229

    Article  CAS  Google Scholar 

  6. Datta R, Henry M (2006) J Chem Technol Biotechnol 81:1119–1129

    Article  CAS  Google Scholar 

  7. Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Energy Environ Sci 6:1415

    Article  CAS  Google Scholar 

  8. Sikder J, Chakraborty S, Pal P, Drioli E, Bhattacharjee C (2012) Biochem Eng J 69:130–137

    Article  CAS  Google Scholar 

  9. Ramírez-López CA, Ochoa-Gómez JR, Fernández-Santos M, Gómez-Jiménez-Aberasturi O, Alonso-Vicario A, Torrecilla-Soria J (2010) Ind Eng Chem Res 49:6270–6278

    Article  Google Scholar 

  10. Purushothaman RKP, van Haveren J, van Es DS, Meli N-Cabrera I, Meeldijk JD, Heeres HJ (2014) Appl Catal B 147:92–100

    Article  CAS  Google Scholar 

  11. Shen L, Zhou X, Wang A, Yin H, Yin H, Cui W (2017) RSC Adv 7:30725–30739

    Article  CAS  Google Scholar 

  12. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Appl Catal A 329:30–35

    Article  CAS  Google Scholar 

  13. Durán-Martín D, Granados ML, Fierro JLG, Pinel C, Mariscal R (2017) Top Catal 60:1062–1071

    Article  Google Scholar 

  14. Feng Y, Yin H, Wang A, Gao D, Zhu X, Shen L, Meng M (2014) Appl Catal A 482:49–60

    Article  CAS  Google Scholar 

  15. Ryabenkova Y, He Q, Miedziak PJ, Dummer NF, Taylor SH, Carley AF, Morgan DJ, Dimitratos N, Willock DJ, Bethell D, Knight DW, Chadwick D, Kiely CJ, Hutchings GJ (2013) Catal Today 203:139–145

    Article  CAS  Google Scholar 

  16. Ryabenkova Y, Miedziak PJ, Dummer NF, Taylor SH, Dimitratos N, Willock DJ, Bethell D, Knight DW, Hutchings GJ (2012) Top Catal 55:1283–1288

    Article  CAS  Google Scholar 

  17. Redina E, Greish A, Novikov R, Strelkova A, Kirichenko O, Tkachenko O, Kapustin G, Sinev I, Kustov L (2015) Appl Catal A 491:170–183

    Article  CAS  Google Scholar 

  18. Feng Y, Yin H, Gao D, Wang A, Shen L, Meng M (2014) J Catal 316:67–77

    Article  CAS  Google Scholar 

  19. Griffin MB, Rodriguez AA, Montemore MM, Monnier JR, Williams CT, Medlin JW (2013) J Catal 307:111–120

    Article  CAS  Google Scholar 

  20. Xue W, Feng Y, Yin H, Liu S, Wang A, Shen L (2016) J Nanosci Nanotechnol 16:9621–9633

    Article  CAS  Google Scholar 

  21. Xue W, Yin H, Lu Z, Feng Y, Wang A, Liu S, Shen L, Jia X (2016) Catal Lett 146:1139–1152

    Article  CAS  Google Scholar 

  22. Jin X, Dang L, Lohrman J, Subramaniam B, Ren S, Chaudhari RV (2013) ACS Nano 7:1309–1316

    Article  CAS  Google Scholar 

  23. Jin X, Zhao M, Shen J, Yan W, He L, Thapa PS, Ren S, Subramaniam B, Chaudhari RV (2015) J Catal 330:323–329

    Article  CAS  Google Scholar 

  24. Borodziński A, Bonarowska M (1997) Langmuir 13:5613–5620

    Article  Google Scholar 

  25. Jin X, Zhao M, Yan W, Zeng C, Bobba P, Thapa PS, Subramaniam B, Chaudhari RV (2016) J Catal 337:272–283

    Article  CAS  Google Scholar 

  26. Zhang C, Wang T, Liu X, Ding Y (2016) J Mol Catal Chem A 424:91–97

    Google Scholar 

  27. Sandoval A, Delannoy L, Méthivier C, Louis C, Zanella R (2015) Appl Catal A 504:287–294

    Article  CAS  Google Scholar 

  28. Rout L, Kumar A, Dhaka RS, Reddy GN, Giri S, Dash P (2017) Appl Catal A 538:107–122

    Article  CAS  Google Scholar 

  29. Tripathy T, Kolya H, Jana S, Senapati M (2017) Eur Polymer J 87:113–123

    Article  CAS  Google Scholar 

  30. Zhang H, Deng X, Jiao C, Lu L, Zhang S (2016) Mater Res Bull 79:29–35

    Article  CAS  Google Scholar 

  31. Xie H, Ye X, Duan K, Xue M, Du Y, Ye W, Wang C (2015) J Alloys Compd 636:40–47

    Article  CAS  Google Scholar 

  32. Goswami P, Ganguli JN (2013) Dalton Trans 42:14480

    Article  CAS  Google Scholar 

  33. Camps E, Castrejón-Sánchez VH, Camacho-López M, Basurto R (2015) Thin Solid Films 581:54–58

    Article  CAS  Google Scholar 

  34. Bukhtiyarov AV, Prosvirin IP, Bukhtiyarov VI (2016) Appl Surf Sci 367:214–221

    Article  CAS  Google Scholar 

  35. Huang X, Wang X, Wang X, Wang X, Tan M, Ding W, Lu X (2013) J Catal 301:217–226

    Article  CAS  Google Scholar 

  36. Strohmeier BR, Levden DE, Field RS, Hercules DM (1985) J Catal 94:514–530

    Article  CAS  Google Scholar 

  37. Yoshida T, Yamasaki K, Sawada S (2006) Bull Chem Soc Jpn 52:2908–2912

    Article  Google Scholar 

  38. Parmigiani F, Pacchioni G, Illas F, Bagus PS (1992) J Electron Spectrosc Relat Phenom 59:255–269

    Article  CAS  Google Scholar 

  39. Wang H, Fan W, He Y, Wang J, Kondo JN, Tatsumi T (2013) J Catal 299:10–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 21706290), Natural Science Foundation of Shandong Province (Grant No. ZR2017MB004), Innovative Research Funding from Qingdao City, Shandong Province (Grant No. 17-1-1-80-jch), “Fundamental Research Funds for the Central Universities” (Grant No. 17CX02017A) and New Faculty Start-Up Funding from China University of Petroleum (Grant No. YJ201601059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jin.

Ethics declarations

Conflict of interest

All authors declare that: (i) no support, financial or otherwise, has been received from any organization that may have an interest in the submitted work; and (ii) there are no other relationships or activities that could appear to have influenced the submitted work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, F., Wang, H., Jin, X. et al. Selective Oxidation of 1,2-Propanediol to Lactic Acid Over Synergistic AuCu/TiO2 Catalysts. Catal Lett 149, 1037–1045 (2019). https://doi.org/10.1007/s10562-019-02670-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02670-5

Keywords

Navigation