Skip to main content

Advertisement

Log in

Preparation and Characterization of Core–Shell Composite Zeolite BEA@MFI and Their Catalytic Properties in ESR

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A group of BEA@MFI core–shell zeolite catalysts were successfully constructed with Cu-, Ni-modified Beta core and Co-based Silicalite-1 shell by combining seed induction secondary growth technique and incipient wetness impregnation method. The resulting micro-composite possess a well-defined core–shell structure with high surface area and abundant mesopore in the outer shell, and a relative large truncated bi-pyramidal shape core of Beta. It was further used to correlate their performance in ethanol steam reforming. The obtained xNiyCu-Beta@Co-Silicalite-1 catalysts exhibited excellent catalytic performance compared with the conventional zeolite catalysts. Particularly, the 2.5Ni2.5Cu-Beta@CoSilicalite-1 catalyst exhibited the highest selectivity of hydrogen, the lowest selectivity of by-products, the long-term stability and coking-resistance capability. This is mainly attributed to the excellent textural properties. And the Ni, Cu nanoparticles which incorporated into the core–shell micro-composites protected the properties of active phases effectively. Moreover, the “purification effect” of the Co-base shell is conducive to obtaining high-purity hydrogen through a multiple reaction system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li SR, Gong JL (2014) Chem Soc Rev 43:7245

    Article  CAS  PubMed  Google Scholar 

  2. Sharma YC, Kumar A, Prasad R, Upadhyay SN (2017) Renew Sust Energ Rev 74:89

    Article  CAS  Google Scholar 

  3. Llorca J, Homs N, Sales J, de la Piscina PR (2002) J Catal 209:306

    Article  CAS  Google Scholar 

  4. Zhang J, Zhong Z, Cao XM, Hu P, Sullivan MB (2014) ACS Catal 4:448

    Article  CAS  Google Scholar 

  5. Coronel L, Múnera JF, Tarditi AM, Moreno MS, Cornaglia LM (2014) Appl Catal B 160:254

    Article  CAS  Google Scholar 

  6. Rossetti I, Lasso J, Nichele V, Signoretto M, Finocchio E, Ramis G, Michele AD (2014) Appl Catal B 150:257

    Article  CAS  Google Scholar 

  7. Li D, Li XY, Gong JL (2016) Chem Rev 116:11529

    Article  CAS  PubMed  Google Scholar 

  8. Zhang CX, Li SR, Li MS, Wang SP, Ma XB, Gong JL (2012) AIChE J 58:516

    Article  CAS  Google Scholar 

  9. Palma V, Castaldo P, Ciambelli P, Iaquaniello G (2014) Appl Catal B 145:73

    Article  CAS  Google Scholar 

  10. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094

    Article  CAS  PubMed  Google Scholar 

  11. Karim AM, Su Y, Engelhard MH, King DL, Wang Y (2011) ACS Catal 1:279

    Article  CAS  Google Scholar 

  12. Koh AC, Leong WK, Chen L, Ang TP, Lin J, Johnson BF, Khimyak T (2008) Catal Commun 9:170

    Article  CAS  Google Scholar 

  13. Bouizi Y, Diaz I, Rouleau L, Valtchev VP (2005) Adv Funct Mater 15:1955

    Article  CAS  Google Scholar 

  14. Pirngruber GD, Laroche C, Maricar-Pichon M, Rouleau L, Bouizi Y, Valtchev V (2013) Micropor Mesopor Mater 169:212

    Article  CAS  Google Scholar 

  15. Bouizi Y, Rouleau L, Valtchev VP (2006) Micropor Mesopor Mater 91:70

    Article  CAS  Google Scholar 

  16. Wang N, Sun QM, Bai RS, Li X, Guo GQ, Yu JH (2016) J Am Chem Soc 138:7484

    Article  CAS  PubMed  Google Scholar 

  17. Chen LC, Lin SD (2014) Appl Catal B 148:509

    Article  CAS  Google Scholar 

  18. Andonova S, De Avila CN, Arishtirova K, Bueno JMC, Damyanova S (2011) Appl Catal B 105:346

    Article  CAS  Google Scholar 

  19. Chen LC, Lin SD (2011) Appl Catal B 106:639

    Article  CAS  Google Scholar 

  20. Lorenzut B, Montini T, De Rogatis L, Canton P, Benedetti A, Fornasiero P (2011) Appl Catal B 101:397

    Article  CAS  Google Scholar 

  21. De Rogatis L, Montini T, Lorenzut B, Fornasiero P (2008) Energy Environ Sci 1:501

    Google Scholar 

  22. Serrano DP, Van Grieken R, Sanchez P, Sanz P, Rodríguez L (2001) Micropor Mesopor Mater 46:35

    Article  CAS  Google Scholar 

  23. Persson AE, Schoeman BJ, Sterte J, Otterstedt JE (1994) Zeolites 14:557

    Article  CAS  Google Scholar 

  24. Wang D, Xu L, Wu P (2014) J Mater Chem A 2:15535

    Article  CAS  Google Scholar 

  25. Beckers J, Rothenberg G (2010) Green Chem 12:939

    Article  CAS  Google Scholar 

  26. Shan J, Janvelyan N, Li H, Liu JL, Egle TM, Ye JC, Biener MM, Biener J, Friend CM, Flytzani-Stephanopoulos M (2017) Appl Catal B 205:541

    Article  CAS  Google Scholar 

  27. Bouizi Y, Rouleau L, Valtchev VP (2006) Chem Mater 18:4959

    Article  CAS  Google Scholar 

  28. Groen JC, Abelló S, Villaescusa LA, Pérez-Ramírez J (2008) Micropor Mesopor Mater 114:93

    Article  CAS  Google Scholar 

  29. Belambe AR, Oukaci R, Goodwin JJG (1997) J Catal 166:8

    Article  CAS  Google Scholar 

  30. Prieto G, Martínez A, Concepción P, Moreno-Tost R (2009) J Catal 266:129

    Article  CAS  Google Scholar 

  31. Riva R, Miessner H, Vitali R, Del Piero G (2000) Appl Catal A 196:111

    Article  CAS  Google Scholar 

  32. Jongsomjit B, Panpranot J, Goodwin JG Jr (2001) J Catal 204:98

    Article  CAS  Google Scholar 

  33. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2004) J Power Sour 134:27

    Article  CAS  Google Scholar 

  34. Pradhan AC, Uyar T (2017) ACS Appl Mater Interfaces 9:35757

    Article  CAS  PubMed  Google Scholar 

  35. Zhang JJ, Liang YQ, Mao J, Yang XJ, Cui ZD, Zhu SL, Li ZY (2016) Sensor Actuat B 235:420

    Article  CAS  Google Scholar 

  36. Huang W, Zuo Z, Han P, Li Z, Zhao T (2009) J Electron Spectrosc 173:88

    Article  CAS  Google Scholar 

  37. Sun JM, Karim AM, Mei DH, Engelhard M, Bao XH, Wang Y (2015) Appl Catal B 162:141

    Article  CAS  Google Scholar 

  38. Li D, Zeng L, Li XY, Assabumrungrat S, Gong JL (2015) Appl Catal B 176:532

    Article  CAS  Google Scholar 

  39. Sanchez-Sanchez MC, Navarro RM, Espartero I, Ismail AA, Al-Sayari SA, Fierro JLG (2013) Top Catal 56:1672

    Article  CAS  Google Scholar 

  40. Calles JA, Carrero A, Vizcaíno AJ (2010) Proceedings of the WHEC 2010, p. 411

  41. Profeti LPR, Ticianelli EA, Assaf EM (2009) Appl Catal A: Gen 360:17

    Article  CAS  Google Scholar 

  42. Sekine Y, Nakazawa Y, Oyama K, Shimizu T, Ogo S (2014) Appl Catal A 472:113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (No. 51541210) and Natural science fundation of Shanxi Province (No. 201701D121042) for our funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianmei Xie.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zheng, Z., Wang, S. et al. Preparation and Characterization of Core–Shell Composite Zeolite BEA@MFI and Their Catalytic Properties in ESR. Catal Lett 149, 766–777 (2019). https://doi.org/10.1007/s10562-018-2638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2638-3

Keywords

Navigation