Skip to main content

Advertisement

Log in

Killing Two Birds with One Stone: A Highly Active Tubular Carbon Catalyst with Effective N Doping for Oxygen Reduction and Hydrogen Evolution Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) are two of the core reactions that occur in fuel cells and water electrolysis devices. Heteroatom-doped carbon materials are promising metal-free electrocatalysts to improve the conversion efficiency of these devices. To optimize the nanostructures of such carbon-based catalysts, herein, we reported an effective template method to synthesize N doped carbon nanotubes by using polydopamine as a precursor. The use of the ZnO nanowire not only serves as a self-sacrificial template to direct the formation of the nanotube, but also greatly extends the porosity of the carbon nanotube. Moreover, the polydopamine precursor also leads to effective N doping. An optimized sample, NCNT-900, shows high ORR performance comparable with that of Pt/C as well as good HER performance in both alkaline and acid media, making it one of the most effective carbon-based HER catalysts. This strategy offers an opportunity to synthesize catalysts with higher activity by rational design of a carbon precursor with higher N content or multi-heteroatom co-doping.

Graphical Abstract

Nitrogen doped carbon nanotube with high performance for both ORR and HER was synthesized using ZnO nanowires as template. The obtained materials show effective N doping that provides abundant active sites, high surface area and unique textural parameters that can effectively enhance mass transfer. When used for electrocatalysts, NCNT-900 shows high ORR performance comparable with that of Pt/C and good HER performance in both alkaline and acid media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Chem Rev 110:6474

    Article  CAS  Google Scholar 

  2. Turner JA (2004) Science 305:972

    Article  CAS  Google Scholar 

  3. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci USA 103:15729

    Article  CAS  PubMed  Google Scholar 

  4. Duan J, Chen S, Jaroniec M, Qiao S (2015) ACS Catal 5:5207

    Article  CAS  Google Scholar 

  5. Wang J, Xu F, Jin H, Chen Y, Wang Y (2017) Adv Mater 29:1605838

    Article  CAS  Google Scholar 

  6. Huang Z, Wang J, Peng Y, Jung C, Fisher A, Wang X (2017) Adv Energy Mater 7:1700544

    Article  CAS  Google Scholar 

  7. Li J, Hou P, Liu C (2017) Small 7:1702002

    Article  CAS  Google Scholar 

  8. Debe MK (2012) Nature 486:43

    Article  CAS  Google Scholar 

  9. Cheng N, Banis MN, Liu J, Riese A, Mu S, Li R, Sham TK, Sun X (2015) Energy Environ Sci 8:1450

    Article  CAS  Google Scholar 

  10. Wu G, Zelenay P (2013) Acc Chem Res 46:1878

    Article  CAS  PubMed  Google Scholar 

  11. Fan X, Zhou H, Guo X (2015) ACS Nano 9:5125

    Article  CAS  PubMed  Google Scholar 

  12. Jin Y, Wang H, Li J, Yue X, Han Y, Shen PK, Cui Y (2016) Adv Mater 28:3785

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Xu H, Huang H, Gao L, Zhao Y, Ma T (2017) Electrochim Acta 254:148

    Article  CAS  Google Scholar 

  14. Li JC, Hou PX, Zhang L, Liu C, Cheng HM (2014) Nanoscale 6:12065

    Article  CAS  PubMed  Google Scholar 

  15. Liu X, Zhou W, Yang L, Li L, Zhang Z, Ke Y, Chen S (2015) J Mater Chem A 3:8840

    Article  CAS  Google Scholar 

  16. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Y, Yang L, Chen S, Wang X, Ma Y, Wu Q, Jiang Y, Qian W, Hu Z (2013) J Am Chem Soc 135:1201

    Article  CAS  PubMed  Google Scholar 

  18. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Science 351:361

    Article  CAS  Google Scholar 

  19. Davodi F, Tavakkoli M, Lahtinen J, Kallio T (2017) J Catal 353:19

    Article  CAS  Google Scholar 

  20. Wang D, Su D (2014) Energy Environ Sci 7:576

    Article  CAS  Google Scholar 

  21. Paraknowitsch JP, Thomas A (2013) Energy Environ Sci 6:2839

    Article  CAS  Google Scholar 

  22. Gong YJ, Fei HL, Zou XL, Zhou W, Yang SB, Ye GL, Liu Z, Peng ZW, Lou J, Vajtai R, Yakobson BI, Tour JM, Ajayan PM (2015) Chem Mater 27:1181

    Article  CAS  Google Scholar 

  23. Qu K, Zheng Y, Zhang X, Davey K, Dai S, Qiao S (2017) ACS Nano 11:7293

    Article  CAS  PubMed  Google Scholar 

  24. Song Z, Liu W, Cheng N, Banis MN, Li X, Sun Q, Xiao B, Liu Y, Lushington A, Li R, Liu L, Sun X (2017) Mater Horiz 4:900

    Article  CAS  Google Scholar 

  25. Chen Y, Wang C, Wu Z, Xiong Y, Xu Q, Yu S, Jiang H (2015) Adv Mater 27:5010

    Article  CAS  Google Scholar 

  26. Ferrero GA, Preuss K, Fuertes AB, Sevilla M, Titirici MM (2016) J Mater Chem A 4:2581

    Article  CAS  Google Scholar 

  27. Xing T, Zheng Y, Li L, Cowie BCC, Gunzelmann D, Qiao S, Huang S, Chen Y (2014) ACS Nano 8:6856

    Article  CAS  PubMed  Google Scholar 

  28. Liu R, Wu D, Feng X, Mullen K (2010) Angew Chem 122:2619

    Article  Google Scholar 

  29. Ding W, Wei Z, Chen S, Qi X, Yang T, Hu J, Wang D, Wan L, Alvi S, Li L (2013) Angew Chem Int Ed 52:11755

    Article  CAS  Google Scholar 

  30. Shuai XM, Shen WZ WZ (2011) J Phys Chem C 2011, 115:6415

    Article  CAS  Google Scholar 

  31. Zhang Z, Yi Z, Wang J, Tian X, Xu P, Shi G, Wang S (2017) J Mater Chem A 5:17064

    Article  CAS  Google Scholar 

  32. Chen B, Li F, Mei Q, Yang Y, Liu H, Yuan G, Han B (2017) Chem Commun 53:13019

    Article  CAS  Google Scholar 

  33. Li Y, Xu H, Huang H, Gao L, Ma T (2018) J Electrochem Soc 165:F158

    Article  CAS  Google Scholar 

  34. Cheon JY, Kim JH, Kim J, Goddeti JH, Park KC, Joo JY SH (2014) J Am Chem Soc 136:8875

    Article  CAS  PubMed  Google Scholar 

  35. Ding W, Li L, Xiong K, Wang Y, Li W, Nie Y, Chen S, Qi X, Wei Z (2015) J Am Chem Soc 137:5414

    Article  CAS  PubMed  Google Scholar 

  36. Fechler N, Zussblatt NP, Rothe R, Schlogl R, Willinger MG, Chmelka BF, Antonietti M (2016) Adv Mater 28:1287

    Article  CAS  PubMed  Google Scholar 

  37. Li S, Cheng C, Liang H, Feng X, Thomas A (2017) Adv Mater 29:1700707

    Article  CAS  Google Scholar 

  38. Wei W, Liang H, Parvez K, Zhuang X, Feng X, Mullen K (2014) Angew Chem Int Ed 53:1570

    Article  CAS  Google Scholar 

  39. Muthukrishnan A, Nabae Y, Chang C, Okajimaa T, Ohsaka T (2015) Catal Sci Technol 5:1764

    Article  CAS  Google Scholar 

  40. Singh D, Jenjeti R, Sampath S, Eswaramoorthy M (2017) J Mater Chem A 5:6025

    Article  CAS  Google Scholar 

  41. Skulason E, Tripkovic V, Bjorketun ME, Gudmundsdottir S, Karlberg G, Rossmeisl J, Bligaard T, Jonsson H, Norskov JK (2010) J Phys Chem C 114:18182

    Article  CAS  Google Scholar 

  42. Conway BE, Tilak BV (2002) Electrochim Acta 47:3571

    Article  CAS  Google Scholar 

  43. Zheng Y, Jiao Y, Zhu Y, Li H, Han L, Chen Y, Du Y, Jaroniec A, Qiao M S (2014) Nat Commun 5:3783

    Article  PubMed  Google Scholar 

  44. Lai J, Li S, Wu F, Saqi M, Luque R, Xu G (2016) Energy Environ Sci 9:1210

    Article  CAS  Google Scholar 

  45. Yue X, Huang S, Cai J, Jin Y, Shen P (2017) J Mater Chem A 5:7784

    Article  CAS  Google Scholar 

  46. Zheng Y, Jiao Y, Li L, Xing T, Chen Y, Jaroniec M, Qiao S (2014) ACS Nano 8:5290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ito Y, Cong W, Fujita T, Tang Z, Chen M (2015) Angew Chem Int Ed 54:2131

    Article  CAS  Google Scholar 

  48. Yan X, Jia Y, Odedairo T, Zhao X, Jin Z, Zhu Z, Yao X (2016) Chem Commun 52:8156

    Article  CAS  Google Scholar 

  49. Zhang B, Wen Z, Ci S, Chen J, He Z (2014) RSC Adv 4:49161

    Article  CAS  Google Scholar 

  50. Zhao X, Li S, Cheng H, Schmidt J, Thomas A (2018) ACS Appl Mater Interfaces 10:3912

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported financially by the National Natural Science Foundation of China (Grant No. 51772039), the Fundamental Research Funds for the Central University (DUT18LK13) and the Research Center for Solar Light Energy Conversion, Kyushu Institute of Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqiang Li, Siru Chen or Tingli Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2151 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, H., Chen, S. et al. Killing Two Birds with One Stone: A Highly Active Tubular Carbon Catalyst with Effective N Doping for Oxygen Reduction and Hydrogen Evolution Reactions. Catal Lett 149, 486–495 (2019). https://doi.org/10.1007/s10562-018-2636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2636-5

Keywords

Navigation