Skip to main content
Log in

Benzyl Alcohol Oxidation Using Gold Catalysts Derived from Au8 Clusters on TiO2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Atomically-precise gold clusters have gained attraction in catalysis due to high fraction of low-coordinated gold atoms, unique structural geometry and ligand effect. Phosphine-ligated gold clusters offer an advantage in the light of the labile gold-phosphorous bond for easy ligand removal. Here, heterogeneous gold catalysts were prepared by depositing atomically-precise phosphine-ligated gold clusters, Au8(PPh3)8(NO3)2 onto anatase-phase TiO2 nanoparticles. The catalysts were then calcined under two different conditions: O2 (Au8/TiO2:O2) and O2 followed by H2 (Au8/TiO2:O2–H2) at 200 °C, to dislodge phosphine ligands from the Au core. It was found that Au8/TiO2:O2–H2 catalyst showed a decent catalytic activity in benzyl alcohol oxidation while Au8/TiO2 and Au8/TiO2:O2 were completely inactive. Such results imply that small-size gold clusters (2–3 nm) alone do not always contribute to high catalytic activity of gold catalysts. It is suggested that the presence of NO3 species defines the catalytic activity of supported gold clusters in benzyl alcohol oxidation in the case of these catalysts and reinforces our initial claim in the previous work.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408

    Article  Google Scholar 

  2. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309

    Article  CAS  Google Scholar 

  3. Yuan Y, Asakura K, Wan H, Tsai K, Iwasawa Y (1996) Chem Lett 25:755–756

    Article  Google Scholar 

  4. Prati L, Rossi M (1998) J Catal 176:552–560

    Article  CAS  Google Scholar 

  5. Iizuka Y, Tode T, Takao T, Yatsu K-i, Takeuchi T, Tsubota S, Haruta M (1999) J Catal 187:50–58

    Article  CAS  Google Scholar 

  6. Porta F, Prati L, Rossi M, Coluccia S, Martra G (2000) Catal Today 61:165–172

    Article  CAS  Google Scholar 

  7. Bond GC, Sermon PA (1973) Gold Bulletin 6:102–105

    Article  CAS  Google Scholar 

  8. Bailie JE, Hutchings GJ (1999) Chem Commun 21:2151–2152

    Article  Google Scholar 

  9. Milone C, Ingoglia R, Schipilliti L, Crisafulli C, Neri G, Galvagno S (2005) J Catal 236:80–90

    Article  CAS  Google Scholar 

  10. Milone C, Tropeano ML, Gulino G, Neri G, Ingoglia R, Galvagno S (2002) Chem Commun 8:868–869

    Article  CAS  Google Scholar 

  11. Li G, Zeng C, Jin R (2014) J Am Chem Soc 136:3673–3679

    Article  CAS  PubMed  Google Scholar 

  12. Tamiolakis I, Fountoulaki S, Vordos N, Lykakis IN, Armatas GS (2013) J Mater Chem A 1:14311–14319

    Article  CAS  Google Scholar 

  13. Pritchard J, Kesavan L, Piccinini M, He Q, Tiruvalam R, Dimitratos N, Lopez-Sanchez JA, Carley AF, Edwards JK, Kiely CJ, Hutchings GJ (2010) Langmuir 26:16568–16577

    Article  CAS  PubMed  Google Scholar 

  14. Corma A, Serna P (2006) Science 313:332–334

    Article  CAS  PubMed  Google Scholar 

  15. Negishi Y, Nakazaki T, Malola S, Takano S, Niihori Y, Kurashige W, Yamazoe S, Tsukuda T, Häkkinen H (2015) J Am Chem Soc 137:1206–1212

    Article  CAS  PubMed  Google Scholar 

  16. Gutrath BS, Englert U, Wang Y, Simon U (2013) Eur J Inorg Chem 2013:2002–2006

    Article  CAS  Google Scholar 

  17. Donoeva BG, Ovoshchnikov DS, Golovko VB (2013) ACS Catal 3:2986–2991

    Article  CAS  Google Scholar 

  18. Ovoshchnikov DS, Donoeva BG, Williamson BE, Golovko VB (2014) Catal Sci Technol 4:752–757

    Article  CAS  Google Scholar 

  19. Adnan RH, Andersson GG, Polson MIJ, Metha GF, Golovko VB (2015) Catal Sci Technol 5:1323–1333

    Article  CAS  Google Scholar 

  20. Haruta M (2003) Chem Rec 3:75–87

    Article  CAS  PubMed  Google Scholar 

  21. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335

    Article  CAS  PubMed  Google Scholar 

  22. Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti J-M, Abbet S, Judai K, Heiz U (2005) Science 307:403–407

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Y, Qian H, Jin R (2010) Chemistry A 16:11455–11462

    CAS  Google Scholar 

  24. Liu Y, Tsunoyama H, Akita T, Tsukuda T (2010) Chem Lett 39:159–161

    Article  CAS  Google Scholar 

  25. Tsunoyama H, Liu Y, Akita T, Ichikuni N, Sakurai H, Xie S, Tsukuda T (2011) Catal Surv Asia 15:230–239

    Article  CAS  Google Scholar 

  26. Haider P, Kimmerle B, Krumeich F, Kleist W, Grunwaldt J-D, Baiker A (2008) Catal Lett 125:169–176

    Article  CAS  Google Scholar 

  27. Wan X-K, Wang J-Q, Nan Z-A, Wang Q-M (2017) Sci Adv 3:e1701823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuan Y, Asakura K, Wan H, Tsai K, Iwasawa Y (1996) Catal Lett 42:15–20

    Article  CAS  Google Scholar 

  29. Solsona B, Conte M, Cong Y, Carley A, Hutchings G (2005) Chem Commun 18:2351–2353

    Article  CAS  Google Scholar 

  30. Van der Velden JWA, Bour JJ, Bosman WP, Noordik JH (1983) Inorg Chem 22:1913–1918

    Article  Google Scholar 

  31. Gutrath BS, Schiefer F, Homberger M, Englert U, Şerb M-D, Bettray W, Beljakov I, Meded V, Wenzel W, Simon U (2016) Eur J Inorg Chem 2016:975–981

    Article  CAS  Google Scholar 

  32. Anderson DP, Adnan RH, Alvino JF, Shipper O, Donoeva B, Ruzicka J-Y, Al Qahtani H, Harris HH, Cowie B, Aitken JB, Golovko VB, Metha GF, Andersson GG (2013) Phys Chem Chem Phys 15:14806–14813

    Article  CAS  PubMed  Google Scholar 

  33. Gutrath BS, Schiefer F, Homberger M, Englert U, Şerb MD, Bettray W, Beljakov I, Meded V, Wenzel W, Simon U (2016) Eur J Inorg Chem 2016:975–981

    Article  CAS  Google Scholar 

  34. Higaki T, Zhou M, Lambright KJ, Kirschbaum K, Sfeir MY, Jin R (2018) J Am Chem Soc 140:5691–5695

    Article  CAS  PubMed  Google Scholar 

  35. Al Qahtani HS, Kimoto K, Bennett T, Alvino JF, Andersson GG, Metha GF, Golovko VB, Sasaki T, Nakayama T (2016) J Chem Phys 144:114703

    Article  CAS  PubMed  Google Scholar 

  36. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) J Phys Chem B 110:15700–15707

    Article  CAS  PubMed  Google Scholar 

  37. S. L. and and El-Sayed MA (2003) Annu Rev Phys Chem 54:331–366

    Article  CAS  PubMed  Google Scholar 

  38. Link S, Wang ZL, El-Sayed MA (1999) J Phys Chem B 103:3529–3533

    Article  CAS  Google Scholar 

  39. Della Gaspera E, Bersani M, Mattei G, Nguyen T-L, Mulvaney P, Martucci A (2012) Nanoscale 4:5972–5979

    Article  CAS  PubMed  Google Scholar 

  40. Zhou M, Zeng C, Chen Y, Zhao S, Sfeir MY, Zhu M, Jin R (2016) Nat Commun 7:13240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderson DP, Alvino JF, Gentleman A, Qahtani HA, Thomsen L, Polson MIJ, Metha GF, Golovko VB, Andersson GG (2013) Phys Chem Chem Phys 15:3917–3929

    Article  CAS  PubMed  Google Scholar 

  42. Ruzicka J-Y, Abu Bakar F, Hoeck C, Adnan R, McNicoll C, Kemmitt T, Cowie BC, Metha GF, Andersson GG, Golovko VB (2015) J Phys Chem C 119:24465–24474

    Article  CAS  Google Scholar 

  43. Liu Y, Tsunoyama H, Akita T, Tsukuda T (2009) J Phys Chem C 113:13457–13461

    Article  CAS  Google Scholar 

  44. Hirayama J, Kamiya Y (2018) Cataly Sci Technol. https://doi.org/10.1039/C8CY00730F

    Article  Google Scholar 

  45. Haruta M (2002) CATTECH 6:102–115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Milo Kral and Mike Flaws for their help with HRTEM imaging, Dr. Meike Holzenkaempfer and Dr. Marie Squire for development of the HPLC methodology. This work was supported by the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohul H. Adnan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 251 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adnan, R.H., Golovko, V.B. Benzyl Alcohol Oxidation Using Gold Catalysts Derived from Au8 Clusters on TiO2. Catal Lett 149, 449–455 (2019). https://doi.org/10.1007/s10562-018-2625-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2625-8

Keywords

Navigation