Skip to main content
Log in

Synthesis of Efficient Cu/CoFe2O4 Catalysts for Low Temperature CO Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Different content of Cu has been loaded onto CoFe2O4 support, and their gas-phase CO oxidation performance has been tested to explore the best Cu loading content and the mechanism of catalyst oxidation. The fundamental characteristics of Cu doped CoFe2O4 are revealed by XRD and TEM. The catalytic mechanism is elucidated by XPS, H2-TPR, CO-TPD and in-situ DRIFTS. The CO oxidation performance is greatly improved upon Cu doping on the surface of CoFe2O4 catalysts. It is found that 5 wt% Cu/CoFe2O4 catalysts showed higher CO oxidation performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hyeon T (2003) Chem Commun 927–934

  2. Lu AH, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schüth F (2004) Angew Chem Int Ed 43:4303–4306

    Article  CAS  Google Scholar 

  3. Tsang SC, Caps V, Paraskevas I, Chadwick D, Thompsett D (2004) Angew Chem Int Ed 43:5645–5649

    Article  CAS  Google Scholar 

  4. Chikazumi S, Taketomi S, Ukita M, Mizukami M, Miyajima H, Setogawa M, Kurihara M (1987) J Magn Magn Mater 65:245–251

    Article  CAS  Google Scholar 

  5. Mornet S, Vasseur S, Grasse F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Prog Solid State Chem 34:237–247

    Article  CAS  Google Scholar 

  6. Li Z, Wei L, Gao MY, Lei H (2005) Adv Mater 17:1001–1005

    Article  CAS  Google Scholar 

  7. Ito A, Shinkai M, Honda H, Kobayashi T (2005) J Biosci Bioeng 100:1–11

    Article  CAS  PubMed  Google Scholar 

  8. Hall DA, Gaster RS, Lin T, Osterfeld SJ, Han S, Murmann B, Wang SX (2010) Biosens Bioelectron 25:2051–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grigorova M, Blythe HJ, Blaskov V, Rusanov V, Petkov V, Masheva V, Nihtianova D, Martinez LM, Muñoz JS, Mikhov M (1998) J Magn Magn Mater 183:163–172

    Article  CAS  Google Scholar 

  10. Shenker H (1957) Phys Rev 107:1246

    Article  CAS  Google Scholar 

  11. Indra A, Menezes PW, Sahraie NR, Bergmann A, Das C, Tallarida M, Schmeißer D, Strasser P, Driess M (2014) J Am Chem Soc 136:17530–17536

    Article  CAS  PubMed  Google Scholar 

  12. Godinho MI, Catarino MA, da Silva Pereira MI, Mendonça MH, Costa FM (2002) Electrochim Acta 47:4307–4314

    Article  CAS  Google Scholar 

  13. Chagas CA, de Souza EF, de Carvalho MCNA, Martins RL, Schmal M (2016) Appl Catal A 519:139–145

    Article  CAS  Google Scholar 

  14. Fu Y, Chen H, Sun X, Wang X (2012) Appl Catal B 111:280–287

    Article  CAS  Google Scholar 

  15. Tong JH, Bo LL, Li Z, Lei ZQ, Xia CG (2009) J Mol Catal A 307:58–63

    Article  CAS  Google Scholar 

  16. Thomas J, Thomas N, Girgsdies F, Beherns M, Huang X, Sudheesh VD, Sebastian V (2017) New J Chem 417:356–7363

    Google Scholar 

  17. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309

    Article  CAS  Google Scholar 

  18. Zhou AB, Wang J, Wang H, Li H, Wan JQ, Shen MQ (2018) J Rare Earths 36:257–264

    Article  CAS  Google Scholar 

  19. Newton MA, Ferri D, Smolentsev G, Marchionni V, Nachtegaal M (2016) J Am Chem Soc 138:13930–13940

    Article  CAS  PubMed  Google Scholar 

  20. Haruta M (2004) Gold Bull 37:27–36

    Article  CAS  Google Scholar 

  21. Zhang XD, Li HX, Yang Y, Zhang TT, Wen X, Liu N, Wang DJ (2017) J Environ Chem Eng 5:5179–5186

    Article  CAS  Google Scholar 

  22. Lykaki M, Pachatouridou E, Carabineiro SAC, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M (2018) Appl Catal B 230:18–28

    Article  CAS  Google Scholar 

  23. Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) J Magn Magn Mater 308:289–295

    Article  CAS  Google Scholar 

  24. Houshiar M, Zebhi F, Razi ZJ, Alidoust A, Askari Z (2014) J Magn Magn Mater 371:43–48

    Article  CAS  Google Scholar 

  25. Sharifi I, Shokrollahi H, Doroodmand MM, Safi R (2012) J Magn Magn Mater 324:1854–1861

    Article  CAS  Google Scholar 

  26. Borgohain C, Senapati KK, Mishra D, Sarma KC, Phukan P (2010) Nanoscale 2:2250–2256

    Article  CAS  PubMed  Google Scholar 

  27. Pramanik NC, Fujii T, Nakanishi M, Takada J (2004) J Mater Chem 14:3328–3332

    Article  CAS  Google Scholar 

  28. Zhang Y, Liu Y, Yang Z, Xiong R, Shi J (2011) J Nanopart Res 13:4557–4563

    Article  CAS  Google Scholar 

  29. Rondinone AJA, Samia ACS, Zhang ZJ (1999) J Phys Chem B 103:6876–6880

    Article  CAS  Google Scholar 

  30. Yang YH, Jing LH, Yu XL, Yan DD, Gao MY (2007) Chem Mater 19:4123–4128

    Article  CAS  Google Scholar 

  31. Hong D, Yamada Y, Sheehan M, Shikano S, Kuo CH, Tian M, Tsung CK, Fukuzumi S (2014) ACS Sustain Chem Eng 2:2588–2594

    Article  CAS  Google Scholar 

  32. Shafi KVPM, Gedanken A, Prozorov R, Balogh J (1998) Chem Mater 10:3445–3450

    Article  CAS  Google Scholar 

  33. Bao N, Shen L, Wang Y, Padhan P, Gupta A (2007) J Am Chem Soc 129:12374–12375

    Article  CAS  PubMed  Google Scholar 

  34. Li F, Liu JJ, Evans DG, Duan X (2004) Chem Mater 161:597–602

    Google Scholar 

  35. Luo XL, Pan Z, Pei F, Jin ZP, Miao KK, Yang PF, Qian HM, Chen Q, Feng GD (2018) J Ind Eng Chem 59:410–415

    Article  CAS  Google Scholar 

  36. Nappini S, Magnano E, Bondino F, Píš I, Barla A, Fantechi E, Pineider F, Sangregorio C, Vaccari L, Venturelli L, Baglioni P (2015) J Phys Chem C 119:25529–25541

    Article  CAS  Google Scholar 

  37. Moussy JB (2013) J Phys D 46:143001

    Article  CAS  Google Scholar 

  38. Li MY, Mao YC, Yang H, Li W, Wang CS, Liu P, Tong YX (2013) New J Chem 37:3116–3120

    Article  CAS  Google Scholar 

  39. Zhou ZP, Zhang Y, Wang ZY, Wei W, Tang WF, Shi J, Xiong R (2008) Appl Surf Sci 254:6972–6975

    Article  CAS  Google Scholar 

  40. Sexton BA, Hughes AE, Turney TW (1986) J Catal 97:390–406

    Article  CAS  Google Scholar 

  41. Marco JF, Gancedo JR, Gracia M, Gautier JL, Rios E, Berry FJ (2000) J Solid State Chem 153:74–81

    Article  CAS  Google Scholar 

  42. Hamoudi S, Larachi F, Adnot A, Sayari A (1999) J Catal 185:333–344

    Article  CAS  Google Scholar 

  43. Tang XF, Li YG, Huang XM, Xu YD, Zhu HQ, Wang JG, Shen WJ (2006) Appl Catal B 62:265–273

    Article  CAS  Google Scholar 

  44. Pham TD, Lee BK (2017) J Catal 345:87–95

    Article  CAS  Google Scholar 

  45. Chiang LF, Doong R (2014) J Hazard Mater 277:84–92

    Article  CAS  PubMed  Google Scholar 

  46. Zou YL, Kang SZ, Li XQ, Qin LX, Mu J (2014) Int J Hydrog Energy 39:15403–15410

    Article  CAS  Google Scholar 

  47. Gu D, Jia CJ, Weidenthaler C, Bongard HJ, Spliethoff B, Schmidt W, Schüth F (2015) J Am Chem Soc 137:11407–11418

    Article  CAS  PubMed  Google Scholar 

  48. Omata K, Takada T, Kasahara S, Yamada M (1996) Appl Catal A 146:255

    Article  CAS  Google Scholar 

  49. Jacobs JP, Maltha A, Reintjes JGH, Drimal J, Ponec V, Brongersma HH (1994) J Catal 147:294

    Article  CAS  Google Scholar 

  50. Li B, Yildirim E, Li W, Qi DP, Yu JC, Wei JQ, Liu ZY, Sun ZK, Liu Y, Kong B, Xue ZT, Liu ZJ, Yang SW, Chen XD, Zhao DY (2018) Adv Funct Mater 28:1802088–1802095

    Article  CAS  Google Scholar 

  51. Yang QJ, Choi H, Al-Abed SR, Dionysiou DD (2007) Appl Catal B 88:462–469

    Article  CAS  Google Scholar 

  52. Shen YL, Yu J, Xiao XZ, Guo XM, Mao DS, Huang HJ, Lu GZ (2017) J Catal 352:466–479

    Article  CAS  Google Scholar 

  53. Lázár K, Mathew T, Koppány Z, Megyeri J, Samuel V, Mirajkar SP, Rao BS, Guczi L (2002) Phys Chem Chem Phys 4:3530–3536

    Article  CAS  Google Scholar 

  54. Zhang FZ, Wei CH, Wu KY, Zhou HT, Hu Y, Preis S (2017) Appl Catal A 547:60–68

    Article  CAS  Google Scholar 

  55. Zhou RX, Yu TM, Jiang XY, Chen F, Zheng XM (1999) Appl Surf Sci 148:263–270

    Article  CAS  Google Scholar 

  56. Wang WW, Du PP, Zou SH, He HY, Wang RX, Jin Z, Shi S, Huang YY, Si R, Song QS, Jia CJ, Yan CH (2015) ACS Catal 5:2088–2099

    Article  CAS  Google Scholar 

  57. Wang K, Cao YL, Hu JD, Li YZ, Xie J, Jia DZ (2017) ACS Appl Mater Interfaces 9:16128–16137

    Article  CAS  PubMed  Google Scholar 

  58. Shen WW, Mao DS, Luo ZM, Yu J (2017) RSC Adv 7:27689–27698

    Article  CAS  Google Scholar 

  59. Hossaina ST, Azeevab E, Zhangc K, Zella ET, Bernardd DT, Balazd S, Wange R (2018) Appl Surf Sci 455:132–143

    Article  CAS  Google Scholar 

  60. Caputo T, Lisi L, Pirone R, Russo G (2008) Appl Catal A 348:42–53

    Article  CAS  Google Scholar 

  61. Ma SM, Lu GZ, Shen YX, Guo Y, Wang YQ, Guo YL (2011) Catal Sci Technol 1:669–674

    Article  CAS  Google Scholar 

  62. Debnath B, Bansal A, Salunke HG, Sadhu A, Bhattacharyya S (2016) J Phys Chem C 120:5523–5533

    Article  CAS  Google Scholar 

  63. Hornés A, Bera P, Cámara AL, Gamarra D, Munuera G, Martínez-Arias A (2009) J Catal 268:367–375

    Article  CAS  Google Scholar 

  64. Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T (1999) J Catal 188:176–185

    Article  CAS  Google Scholar 

  65. Shan WJ, Shen WJ, Li C (2003) Chem Mater 15:4761–4767

    Article  CAS  Google Scholar 

  66. Wang SR, Wang YJ, Jiang JQ, Liu R, Li MY, Wang YM, Su Y, Zhu BL, Zhang SM, Huang WP, Wu SH (2009) Catal Commun 10:640–644

    Article  CAS  Google Scholar 

  67. Dey S, Dhal GC, Prasad R, Mohan D (2017) Resour Effic Technol 3:293–302

    Article  Google Scholar 

  68. Jiang DE, Dai S (2011) Phys Chem Chem Phys 13:978–984

    Article  CAS  PubMed  Google Scholar 

  69. Bai BY, Li JH, Hao JM (2015) Appl Catal B 164:241–250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21501195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wu, C. & Guo, Z. Synthesis of Efficient Cu/CoFe2O4 Catalysts for Low Temperature CO Oxidation. Catal Lett 149, 399–409 (2019). https://doi.org/10.1007/s10562-018-2612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2612-0

Keywords

Navigation