Skip to main content

Advertisement

Log in

Synergistic Enhancement of Hydrogen Production by ZIF-67 (Co) Derived Mo–Co–S Modified g-C3N4/rGO Photocatalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel and high active g-C3N4/rGO/Mo–Co–S is successfully prepared by a simple hydrothermal reaction and calcination with nitrogen in a tube furnace. Using thioacetamide as the sulfur source, ZIF-67 (Co) as the cobalt source, and sodium molybdate as the molybdenum source, the Mo–Co–S co-catalyst is successfully prepared by high-temperature hydrothermal reaction and one-step sulfidation. The g-C3N4/rGO nanosheets and the new Mo–Co–S co-catalyst provide a large space for dye adsorption and also provide more reactive sites for the reaction. It exhibits synergistic effect between g-C3N4, rGO and Mo–Co–S on very high efficient photocatalytic hydrogen production. Under light irradiation, the EY dye acts as a photosensitizer, which broadens the visible light absorption range and absorption intensity of the semiconductor and forms an effective separation of the photogenerated charge. As an electron donor, TEOA can be oxidized by holes, thereby consuming holes and improving the efficiency of charge separation. The maximum amount of hydrogen evolution reaches about 589 μmol for 5 h over the g-C3N4/rGO/Mo–Co–S photocatalyst under visible light irradiation, which is 23.5 times higher than that of the pure g-C3N4. The high photocurrent response, the faster electron-transfer rate constant (Ket = 1.36 × 109 s−1), the short fluorescence lifetime (0.33 ns) and the small Rs (19.46 Ω) and Ret (59.67 Ω) together accelerated the efficient spatial charges transfer, thereby increasing the photocatalytic activity of H2 production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

References

  1. Wang W, Xu XM, Zhou W, Shao ZP (2017) Adv Sci 4:1600371

    Article  CAS  Google Scholar 

  2. Liu DD, Jin ZL, Bi YP (2017) Catal Sci Technol 7:4478–4488

    Article  CAS  Google Scholar 

  3. Yang LQ, Huang JF, Shi L, Cao LY, Zhou W, Chang WK, Meng XG, Liu GG, Jie YN, Ye JH (2017) Nano Energy 36:331–340

    Article  CAS  Google Scholar 

  4. Shen LJ, Luo MB, Liu YH, Liang RW, Jing FF, Wu L (2015) Appl Catal B 166–167:445–453

    Article  CAS  Google Scholar 

  5. Gasparotto A, Barreca D, Bekermann D, Devi A, Fischer RA, Fornasiero P, Gombac V, Lebedev OI, Maccato C, Montini T, Tendeloo GV, Tondello E (2011) J Am Chem Soc 133:19362

    Article  CAS  Google Scholar 

  6. Xie YP, Yu ZB, Liu G, Ma XL, Cheng HM (2014) Energy Environ Sci 7:1895–1901

    Article  CAS  Google Scholar 

  7. Niu P, Zhang L, Liu G, Cheng HM (2012) Adv Funct Mater 22:4763–4770

    Article  CAS  Google Scholar 

  8. Fan K, Jin ZL, Yang H, Liu DD, Hu HY, Bi YP (2017) Sci Rep 7:7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang JY, Wang YH, Jin J, Zhang J, Lin Z, Huang F, Yu JG (2013) ACS Appl Mater Interfaces 5:10317–10324

    Article  CAS  PubMed  Google Scholar 

  10. Sun ZJ, Chen HL, Huang Q, Du PW (2015) Catal Sci Technol 5:4964

    Article  CAS  Google Scholar 

  11. Chen SS, Qi Y, Hisatomi T, Ding Q, Asai T, Li Z, Ma SSK, Zhang FX, Domen K, Li C (2015) Angew Chem 54:8498–8501

    Article  CAS  Google Scholar 

  12. Zhou FQ, Fan JC, Xu QJ, Min YL (2017) Appl Catal B 201:77–83

    Article  CAS  Google Scholar 

  13. Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY (2011) Small 7:1876–1902

    Article  CAS  PubMed  Google Scholar 

  14. Lin Y, Zhang K, Chen WF, Liu YD, Geng ZG, Zeng J, Pan N, Yan LF, Wang XP, Hou JG (2010) ACS Nano 4:3033–3038

    Article  CAS  PubMed  Google Scholar 

  15. Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM (2010) Angew Chem Int Ed 49:3014

    Article  CAS  Google Scholar 

  16. Ng YH, Iwase A, Kudo A, Amal R (2010) J Phys Chem Lett 1:2607–2612

    Article  CAS  Google Scholar 

  17. Williams G, Seger B, Kamat PV (2008) ACS Nano 2:1487–1491

    Article  CAS  PubMed  Google Scholar 

  18. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) Nat Mater 8:76–80

    Article  CAS  PubMed  Google Scholar 

  19. Wang XC, Chen XF, Thomas A, Fu XZ, Antonietti M (2009) Adv Mater 21:1609–1612

    Article  CAS  Google Scholar 

  20. Cui YJ, Ding ZX, Fu XZ, Wang XC (2012) Angew Chem Int Ed 51:11814–11818

    Article  CAS  Google Scholar 

  21. Cometto C, Kuriki R, Chen LJ, Maeda K, Lau TC, Ishitani O, Rober M (2018) J Am Chem Soc 140:7437–7440

    Article  CAS  PubMed  Google Scholar 

  22. Zhang JS, Zhang MW, Sun RQ, Wang XC (2015) Angew Chem Int Ed 51:10145

    Article  CAS  Google Scholar 

  23. Qin ZX, Xue F, Chen YB, Shen SH, Guo LJ (2017) Appl Catal B 217:551–559

    Article  CAS  Google Scholar 

  24. Chen J, Zhao DM, Diao ZD, Wang M, Guo LJ, Shen SH (2015) ACS Appl Mater Interfaces 7:18843–18848

    Article  CAS  PubMed  Google Scholar 

  25. Jiao L, Zhou YX, Jiang HL (2016) Chem Sci 7:1690–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang SB, Lin JL, Wang XC (2014) Phys Chem Chem Phys 16:14656–14660

    Article  CAS  PubMed  Google Scholar 

  27. Wang SB, Wang XC (2015) Small 11:3097–3112

    Article  CAS  PubMed  Google Scholar 

  28. Wang SB, Wang XC (2016) Angew Chem Int Ed 55:2308–2320

    Article  CAS  Google Scholar 

  29. Wang SB, Yao WS, Lin JL, Ding ZX, Wang XC (2014) Angew Chem Int Ed 53:1034–1038

    Article  CAS  Google Scholar 

  30. Guo YN, Tang J, Qian HY, Wang ZL, Yamauchi Y (2017) Chem Mater 29:5566–5573

    Article  CAS  Google Scholar 

  31. Shao J, Wan ZM, Liu HM, Zheng HY, Gao T, Shen M, Qu QT, Zheng HH (2014) J Mater Chem A 2:12194

    Article  CAS  Google Scholar 

  32. Tang J, Salunkhe RR, Torad NL, Imura M, Furukawa SH, Yamauchi Y (2015) J Am Chem Soc 137:1572–1580

    Article  CAS  Google Scholar 

  33. Ge L, Zuo F, Liu JK, Ma Q, Wang C, Sun DZ, Bartels L, Feng PY (2012) J Phys Chem C 116:13708–13714

    Article  CAS  Google Scholar 

  34. Wang WJ, An TC, Li GY, Xia DH, Zhao HJ, Yu JC, Wong PK (2017) Appl Catal B 217:570–580

    Article  CAS  Google Scholar 

  35. Niu FJ, Dong CL, Zhu CB, Huang YC, Wang M, Maier J, Yu Y, Shen SH (2017) J Catal 352:35–41

    Article  CAS  Google Scholar 

  36. Wang SB, Guan BY, Lou XWD (2018) Energy Environ Sci 11:306–310

    Article  CAS  Google Scholar 

  37. Wang SB, Ding ZX, Wang XC (2015) Chem Commun 51:1517–1519

    Article  CAS  Google Scholar 

  38. Wang SB, Hou YD, Wang XC (2015) ACS Appl Mater Interfaces 7:4327–4335

    Article  CAS  PubMed  Google Scholar 

  39. Zhang P, Wang T, Zeng H (2017) Appl Surf Sci 391:404–414

    Article  CAS  Google Scholar 

  40. Ma YN, Li J, Liu EZ, Wan J, Hu XY, Fan J (2017) Appl Catal B 219:467–478

    Article  CAS  Google Scholar 

  41. Han C, Wang YD, Lei YP, Wang B, Wu N, Shi Q, Li Q (2015) Nano Res 8:1199–1209

    Article  CAS  Google Scholar 

  42. Akple MS, Low JX, Wageh S, Al-Ghamdi AA, Yu JG, Zhang J (2015) Appl Surf Sci 358:196

    Article  CAS  Google Scholar 

  43. Zhao H, Sun SN, Jiang PP, Xu ZJ (2017) Chem Eng J 315:296–303

    Article  CAS  Google Scholar 

  44. Pronin SV, Tabor MG, Jansen DJ, Shenvi RA (2012) J Am Chem Soc 134:2012–2015

    Article  CAS  PubMed  Google Scholar 

  45. Min SX, Lu GX (2011) J Phys Chem C 115:13938–13945

    Article  CAS  Google Scholar 

  46. Wang SB, Guan BY, Lu Y, Lou XWD (2017) J Am Chem Soc 139:17305–17308

    Article  CAS  PubMed  Google Scholar 

  47. >Wang SB, Guan BY, Lou XWD (2018) J Am Chem Soc 140:5037–5040

    Article  CAS  PubMed  Google Scholar 

  48. Zhen WL, Ning XF, Yang BJ, Wu YQ, Li Z, Lu GX (2018) Appl Catal B 221:243

    Article  CAS  Google Scholar 

  49. Zhang ZY, Huang JD, Zhang MY, Yuan Q, Dong B (2015) Appl Catal B 163:298–305

    Article  CAS  Google Scholar 

  50. Shi XW, Fujitsuka M, Kim S, Majima T (2018) Small 14:170327

    Google Scholar 

  51. Wang SB, Wang XC (2015) Appl Catal B 162:494–500

    Article  CAS  Google Scholar 

  52. Zheng C, Zhu ZZ, Wang SB, Hou YD (2015) Appl Surf Sci 359:805–811

    Article  CAS  Google Scholar 

  53. Fageria P, Sudharshan KY, Nazir R, Basu M, Pande S (2017) Electrochim Acta 258:1273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Chinese National Natural Science Foundation (41663012, 21263001) and the innovation team project (YCX18082), North Minzu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Jin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jin, Z. Synergistic Enhancement of Hydrogen Production by ZIF-67 (Co) Derived Mo–Co–S Modified g-C3N4/rGO Photocatalyst. Catal Lett 149, 34–48 (2019). https://doi.org/10.1007/s10562-018-2593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2593-z

Keywords

Navigation