Skip to main content

Advertisement

Log in

LiFePO4/Carbon/Reduced Graphene Oxide Nanostructured Composite as a High Capacity and Fast Rate Cathode Material for Rechargeable Lithium Ion Battery

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, LiFePO4-carbon (LFP-C) and LFP-C/reduced graphene oxide (rGO) nanocomposites were prepared by ultrasonic spray pyrolysis technique in different calcination conditions to be used as the cathode-active materials for lithium ion battery (LIB). The structure, morphology and composition of the obtained materials were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscopy (HR-TEM) and energy-dispersive X-ray spectroscopy (EDX). The XRD results reveal that the olivine pure phase was obtained after calcination of the LFP-C. The SEM images of the prepared materials exhibit the spherical morphology with nanometer size and also change in the morphology by applying the calcination step. The electrochemical performances of cathode-active materials were investigated by charge–discharge test, electrochemical impedance spectroscopy and cyclic voltammetry. The obtained results for LFP-C show that the electrochemical performance was improved by adding carbon precursor and calcining step; in the optimum calcination conditions; 700 °C for 3 h, the LFP-C shows good results in terms of electrochemical performance in comparison with LFP alone. The LFP-C/rGO nanocomposite exhibits the best electrochemical performance however: highest rechargeable capacity and cycle stability; discharge capacity (168 mAh/g at 0.1 C and 123.5 mAh/g at 10 C) and capacity retention of 100% after 50 cycles with maximum reversibility and lithium ion (Li+) diffusion coefficient.

Graphical Abstract

Schematic representation of preparation of the cathode-active materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Armand M, Tarascon J-M (2008) Nature 451:652

    Article  CAS  Google Scholar 

  2. Wong Y, Chan C (2012) Vehicle energy storage: batteries. In: Meyers RA (ed) Encyclopedia of sustainability science and technology, Springer, New York, pp. 11502–11522

    Chapter  Google Scholar 

  3. Yang Z, Zhang J, Kintner-Meyer MC et al (2011) Chem Rev 111:3577

    Article  CAS  Google Scholar 

  4. Ravet N, Chouinard Y, Magnan J et al (2001) J Power Sources 97:503

    Article  Google Scholar 

  5. Yang K, Deng Z, Suo J (2012) J Solid State Electrochem 16:2805

    Article  CAS  Google Scholar 

  6. Huang H, Yin S-C, Nazar LS (2001) Electrochem Solid-State Lett 4:A170

    Article  CAS  Google Scholar 

  7. Croce F, d’Epifanio A, Hassoun J et al (2002) Electrochem Solid-State Lett 5:A47

    Article  CAS  Google Scholar 

  8. Chung S-Y, Bloking JT, Chiang Y-M (2002) Nat Mater 1:123

    Article  CAS  Google Scholar 

  9. Luo S, Tang Z, Lu JZ et al (2008) Ceram Int 34:1349

    Article  CAS  Google Scholar 

  10. Konarova M, Taniguchi I (2010) J Power Sources 195:3661

    Article  CAS  Google Scholar 

  11. Kwon SJ, Kim CW, Jeong WT et al (2004) J Power Sources 137:93

    Article  CAS  Google Scholar 

  12. Li Y, Wan C, Wu Y et al (2000) J Power Sources 85:294

    Article  CAS  Google Scholar 

  13. Park S-H, Oh SW, Sun Y-K (2005) J Power Sources 146:622

    Article  CAS  Google Scholar 

  14. Park S-H, Oh S-W, Myung S-T et al (2005) Solid State Ion 176:481

    Article  CAS  Google Scholar 

  15. Kang H-C, Jun D-K, Jin B et al (2008) J Power Sources 179:340

    Article  CAS  Google Scholar 

  16. Choi D, Kumta PN (2007) J Power Sources 163:1064

    Article  CAS  Google Scholar 

  17. Lee S-B, Cho S, Cho S et al (2008) Electrochem Commun 10:1219

    Article  CAS  Google Scholar 

  18. Jin EM, Jin B, Jun D-K et al (2008) J Power Sources 178:801

    Article  CAS  Google Scholar 

  19. Kim D, Im J, Kang J et al (2007) J Nanosci Nanotechnol 7:3949

    CAS  PubMed  Google Scholar 

  20. Arnold G, Garche J, Hemmer R et al (2003) J Power Sources 119:247

    Article  CAS  Google Scholar 

  21. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  PubMed  Google Scholar 

  22. Zhang LL, Zhou R, Zhao X (2010) J Mater Chem 20:5983

    Article  CAS  Google Scholar 

  23. Su C, Bu X, Xu L et al (2012) Electrochim Acta 64:190

    Article  CAS  Google Scholar 

  24. Wang L, Wang H, Liu Z et al (2010) Solid State Ion 181:1685

    Article  CAS  Google Scholar 

  25. Zhou X, Wang F, Zhu Y et al (2011) J Mater Chem 21:3353

    Article  CAS  Google Scholar 

  26. Lu L-M, Qiu X-L, Zhang X-B et al (2013) Biosens Bioelectron 45:102

    Article  CAS  PubMed  Google Scholar 

  27. Guo Y, Guo S, Ren J et al (2010) Acs Nano 4:4001

    Article  CAS  PubMed  Google Scholar 

  28. Kovtyukhova NI, Ollivier PJ, Martin BR et al (1999) Chem Mater 11:771

    Article  CAS  Google Scholar 

  29. Kodera T, Bi DY, Ogawa D et al (2011) Key Eng Mater 485:107–110

    Article  CAS  Google Scholar 

  30. Yang M-R, Teng T-H, Wu S-H (2006) J Power Sources 159:307

    Article  CAS  Google Scholar 

  31. Wang X, Cheng K, Zhang J et al (2013) Adv Powder Tech 24:593

    Article  CAS  Google Scholar 

  32. Akao S, Yamada M, Kodera T et al (2010) Int J Chem Eng. https://doi.org/10.1155/2010/175914

    Article  Google Scholar 

  33. Gabrisch H, Wilcox JD, Doeff MM (2006) Electrochem Solid-State Lett 9:A360

    Article  CAS  Google Scholar 

  34. Bang J, Didenko Y, Helmich R et al (2012) Aldrich Mater Matter 7:15

    CAS  Google Scholar 

  35. Wang J, Sun X (2012) Energ Environ Sci 5:5163

    Article  CAS  Google Scholar 

  36. Zhang Y, Feng H, Wu X et al (2009) Electrochim Acta 54:3206

    Article  CAS  Google Scholar 

  37. Oh SW, Myung ST, Oh SM et al (2010) Adv Mater 22:4842

    Article  CAS  PubMed  Google Scholar 

  38. Yang J, Wang J, Wang D et al (2012) J Power Sources 208:340

    Article  CAS  Google Scholar 

  39. Kim J-K, Choi J-W, Chauhan GS et al (2008) Electrochim Acta 53:8258

    Article  CAS  Google Scholar 

  40. Konarova M, Taniguchi I (2008) Mater Res Bull 43:3305

    Article  CAS  Google Scholar 

  41. Liao X-Z, Ma Z-F, He Y-S et al (2005) J Electrochem Soc 152:A1969

    Article  CAS  Google Scholar 

  42. Wang Y, Wang J, Yang J et al (2006) Adv Func Mater 16:2135

    Article  CAS  Google Scholar 

  43. Hanai K, Maruyama T, Imanishi N et al (2008) J Power Sources 178:789

    Article  CAS  Google Scholar 

  44. Wang Y, Feng Z-S, Chen J-J et al (2012) Mater Lett 71:54

    Article  CAS  Google Scholar 

  45. Scrosati B, Abraham K, Schalkwijk WA et al (2013) Lithium batteries: advanced technologies and applications. Wiley, Hoboken

    Book  Google Scholar 

  46. Kang F-Y, Ma J, Li B-H (2011) New Carbon Mater 26:161

    Article  CAS  Google Scholar 

  47. Morgan D, Van der Ven A, Ceder G (2004) Electrochem Solid-State Lett 7:A30

    Article  CAS  Google Scholar 

  48. Heinze J (1984) Angew Chem Int Ed 23:831

    Article  Google Scholar 

  49. Jin B, Jin EM, Park K-H et al (2008) Electrochem Commun 10:1537

    Article  CAS  Google Scholar 

  50. Liu J, Manthiram A (2009) Chem Mater 21:1695

    Article  CAS  Google Scholar 

  51. Huang Y-H, Goodenough JB (2008) Chem Mater 20:7237

    Article  CAS  Google Scholar 

  52. Dominko R, Bele M, Gaberscek M et al (2005) J Electrochem Soc 152:A607

    Article  CAS  Google Scholar 

  53. Kang B, Ceder G (2009) Nature 458:190

    Article  CAS  Google Scholar 

  54. Murugan AV, Muraliganth T, Manthiram A (2008) Electrochem Commun 10:903

    Article  CAS  Google Scholar 

  55. Liu J, Kunz M, Chen K et al (2010) J Phys Chem Lett 1:2120

    Article  CAS  Google Scholar 

  56. Liu J, Conry TE, Song X et al (2011) Energy Environ Sci 4:885

    Article  CAS  Google Scholar 

  57. Talebi-Esfandarani M (2013) Synthesis, Characterization and Modification of LifeP04 by Doping with Platinum and Palladium for Lithium-Ion Batteries (Thèse de doctorat, École Polytechnique de Montréal)

  58. Yu S, Dan S, Luo G et al (2012) J Solid State Electrochem 16:1675

    Article  CAS  Google Scholar 

  59. Molenda J, Ojczyk W, Marzec J (2007) J Power Sources 174:689

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the University of Azarbaijan Shahid Madani University for providing facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikael Mollazadeh or Biuck Habibi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 237 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollazadeh, M., Habibi, B. LiFePO4/Carbon/Reduced Graphene Oxide Nanostructured Composite as a High Capacity and Fast Rate Cathode Material for Rechargeable Lithium Ion Battery. Catal Lett 149, 7–18 (2019). https://doi.org/10.1007/s10562-018-2589-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2589-8

Keywords

Navigation