Skip to main content

Advertisement

Log in

Nickel–Tungsten Supported on Thin Carbon Coated SiO2 Nanosphere for Cellulose Conversion to Lower Polyols

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Production of polyols and other chemicals from cellulose was important for sustainable society, and it had long relied on the design of suitable catalysts to achieve high yield of lower polyols. Herein, we reported a new preparing strategy for nickel–tungsten catalyst to fabricate Ni–W/SiO2@C catalysts coated by thin carbon. The crystal carbon demonstrated the recommendable confinement effect to obtain the well dispersed metallic particles on SiO2. The prepared composites were characterized by means of XRD, N2 physisorption, thermogravimetry, XPS, TEM, element mapping and atomic force microscope. These characterizations confirmed that more phases including WO3, Ni, NiW alloys and NiC were formed by incorporation of porous crystal carbon. Moreover, the metallic particles were dispersed in size range of 2–8 nm influenced by coating carbon and ethanediamine (dispersant). The activities of catalysts were evaluated in hydrogenolysis of cellulose to lower polyols at 240 °C under 5.0 MPa H2 pressure in the presence of water. Results showed that catalyst Ni–W/SiO2@C-12 was more favorable for EG production, with the highest EG yield of 60.7% and 100% cellulose conversion after reaction for 60 min.

Graphical Abstract

The series of high efficient nickel–tungsten catalysts Ni–W/SiO2@C were fabricated and coated by thin carbon. The thin coating carbon demonstrated the recommendable confinement effect to obtain the well dispersed metallic particles on SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

References

  1. Xu G, Wang AQ, Pang JF, Zhao XC, Xu JM, Lei N, Jia Wang J, Zheng MY, Yin JZ, Zhang T (2017) Chemocatalytic conversion of cellulosic biomass to methyl glycolate, ethylene glycol, and ethanol. ChemSusChem 10:1390–1394

    Article  CAS  Google Scholar 

  2. Wang YZ, De S, Yan N (2016) Rational control of nano-scale metal-catalysts for biomass conversion. Chem Commun 52:6210–6224

    Article  CAS  Google Scholar 

  3. Clercq RD, Dusselier M, Sels BF (2017) Heterogeneous catalysis for bio-based polyester monomers from cellulosic biomass: advances, challenges and prospects. Green Chem 19:5012–5040

    Article  Google Scholar 

  4. Hausoul PJC, Beine AK, Neghadar L, Palkovits R (2017) Kinetics study of the Ru/C-catalysed hydrogenolysis of polyols—insight into the interaction with the metal surface. Catal Sci Technol 7:56–63

    Article  CAS  Google Scholar 

  5. Li ZH, Su KM, Ren J, Yang DJ, Cheng BW, Kim CK, Yao XD (2018) Direct catalytic conversion of glucose and cellulose. Green Chem 20:863–872

    Article  CAS  Google Scholar 

  6. Xiao ZQ, Fan Y, Cheng YJ, Zhang Q, Ge Q, Sha RY, Ji JB, Mao JW (2018) Metal particles supported on SiO2-OH nanosphere: new insight into interactions with metals for cellulose conversion to ethylene glycol. Fuel 215:406–416

    Article  CAS  Google Scholar 

  7. Sun RY, Zheng MY, Pang JF, Liu X, Wang JH, Pan XL, Wang AQ, Wang XD, Zhang T (2015) Selectivity-switchable conversion of cellulose to glycols over Ni–Sn catalysts. ACS Catal 6:191–201

    Article  Google Scholar 

  8. Li HX, Xu ZW, Yan P, Yan PF (2017) A catalytic aldol condensation system enables one pot conversion of biomass saccharides to biofuel intermediates. Green Chem 19:1751–1756

    Article  CAS  Google Scholar 

  9. Donaldson L, Vaidya A (2017) Visualising recalcitrance by colocalisation of cellulose, lignin and cellulose in pretreated pine biomass using fluorescence microscopy. Sci Rep 7:44386–44398

    Article  Google Scholar 

  10. Wang Y, Deng WP, Wang B, Zhang Q, Wan X, Tang Z, Zhu C, Cao Z, Wang G, Wan H (2013) Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 4:2141–2148

    Article  Google Scholar 

  11. Ji N, Zhang T, Zheng MY, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed 47:8510–8513

    Article  CAS  Google Scholar 

  12. Zhou LK, Wang AQ, Li CZ, Zheng MY, Zhang T (2012) Selective production of 1,2-propylene glycol from Jerusalem artichoke tuber using Ni-W2C/AC catalysts. ChemSusChem 5:932–938

    Article  CAS  Google Scholar 

  13. Wang AQ, Zhang T (2013) One-Pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc Chem Res 46:1377–1386

    Article  CAS  Google Scholar 

  14. Ji N, Zheng MY, Wang AQ, Zhang T, Chen JG (2012) Nickel-promoted tungsten carbide catalysts for cellulose conversion: effect of preparation methods. ChemSusChem 5:939–944

    Article  CAS  Google Scholar 

  15. Zhang XJ, Zhao TS, Hara N, Jin YZ, Zeng CY, Yoneyama Y, Tsubaki N (2014) Direct conversion of rice straw catalyzed by solid acid supported-Pt catalyst using in situ H2 by ethanol steam reforming. Fuel 11:34–38

    Article  CAS  Google Scholar 

  16. Zhu SH, Gao XQ, Zhu YL, Zhu YF, Zheng HY, Li YW (2013) Promoting effect of boron oxide on Cu/SiO2, catalyst for glycerol hydrogenolysis to 1,2-propanediol. J Catal 303:70–79

    Article  CAS  Google Scholar 

  17. Xiao ZQ, Mao JW, Jiang CJ, Xing C, Ji JB, Cheng YJ (2017) One-pot conversion of cellulose into low carbon polyols on nano-Sn based catalysts. J Renew Sustain Energy 9:2153–2164

    Google Scholar 

  18. Ribeiro LS, Delgado JJ, Órfão JJM, Pereira MFR (2017) Carbon supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol. App Catal B 217:265–274

    Article  CAS  Google Scholar 

  19. Baek IG, You SJ, Park ED (2012) Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3. Bioresour Technol 114:684–690

    Article  CAS  Google Scholar 

  20. Chai JC, Zhu SH, Cen YL, Guo J, Wang JG, Fan WB (2017) Effect of tungsten surface density of WO3-ZrO2 on its catalytic performance in hydrogenolysis of cellulose to ethylene glycol. RSC Adv 7:8567–8574

    Article  CAS  Google Scholar 

  21. Yu F, Thomas J, Smet M, Dehaen W, Sels BF (2016) Molecular design of sulfonated hyperbranched poly(arylene oxindole)s for efficient cellulose conversion to levulinic acid. Green Chem 18:1694–1705

    Article  CAS  Google Scholar 

  22. Wang QN, Lei S, Li WC, Ferdi S, Lu AH (2018) Cu supported on thin carbon layer coated porous SiO2 for efficient ethanol dehydrogenation. Catal Sci Technol 8:472–479

    Article  CAS  Google Scholar 

  23. Zheng MY, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T (2010) Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. ChemSusChem 3:63–66

    Article  CAS  Google Scholar 

  24. Sun JY, Liu HC (2014) Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on Ni/C and basic oxide-promoted Ni/C catalysts. Catal Today 234:75–82

    Article  CAS  Google Scholar 

  25. Hamly MS, Eissa MA, Keshk SMAS (2017) New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol. Green Chem 19:5144–5151

    Article  Google Scholar 

  26. Pan GY, Ma YL, Ma XX, Sun YG, Lv JM, Zhang JL (2016) Catalytic hydrogenation of corn stalk into polyol over Ni-W/MCM-41 catalysts. Chem Eng J 299:386–392

    Article  CAS  Google Scholar 

  27. You YJ, Baek IG, Park ED (2013) Hydrogenolysis of cellulose into polyols Ni/W/SiO2 catalysts. Appl Catal A 466:161–168

    Article  CAS  Google Scholar 

  28. Cao Y, Wang J, Kang M, Zhu Y (2014) Efficient synthesis of ethylene glycol from cellulose overNi-WO3/SBA-15 catalysts. J Mol Catal A 381:46–53

    Article  CAS  Google Scholar 

  29. Gatti MN, Mizrahi MD, Ramallo-Lopez JM, Pompeo F, Santori GF, Nichio NN (2017) Improvement of the catalytic activity of Ni/SiO2-C by the modification of the support and Zn addition: bio-propylene glycol from glycerol. Appl Catal A 548:24–32

    Article  CAS  Google Scholar 

  30. Fan PD, Ren J, Pang KL, Cheng Y, Wu X, Zhang ZG, Ren JK, Huang W, Song R (2018) Cellulose solvent assisted, one-step pyrolysis to fabricate heteroatoms-doped porous carbons for electrode materials of supercapacitors. ACS Sustain Chem Eng 6:7715–7724

    Article  CAS  Google Scholar 

  31. Zhou X, Wang PL, Zhang YG, Wang LL, Zhang LT, Zhang L, Xu L, Liu L (2017) Biomass based nitrogen-doped structure-tunable versatile porous carbon materials. J Mater Chem A 5:12958–12968

    Article  CAS  Google Scholar 

  32. Xiao ZQ, Ge QW, Xing C, Jiang CJ, Fang S, Ji JB, Mao JW (2016) Self-reducing bifunctional Ni-W/SBA-15 catalyst for cellulose hydrolysis to low carbon polyols. J Energy Chem 25:434–444

    Article  Google Scholar 

  33. Liu CW, Zhang CH, Hao SL, Sun SK, Liu KK, Xu J, Zhu YL, Li YW (2016) WOx, modified Cu/Al2O3, as a high-performance catalyst for the hydrogenolysis of glucose to 1,2-propanediol. Catal Today 261:116–127

    Article  CAS  Google Scholar 

  34. Li NX, Zheng Y, Wei LF, Teng HC, Zhou JC (2016) Metal nanoparticles supported on WO3 nanosheets for the highly selective cellulose hydrogenolysis to ethylene glycol. Green Chem 19:682–691

    Article  Google Scholar 

  35. Liu Y, Liu H (2016) Kinetic insight into the effect of the catalytic functions on selective conversion of cellulose to polyols on carbon-supported WO3 and Ru catalysts. Catal Today 269:74–81

    Article  CAS  Google Scholar 

  36. Chen X, Yang HY, Hülsey MJ, Yan N (2017) One-pot synthesis of N-heterocyclic compounds from carbohydrates over tungsten-based catalysts. ACS Sustain Chem Eng 5:11096–11104

    Article  CAS  Google Scholar 

  37. Xiao ZQ, Zhang Q, Chen TT, Wang XN, Fan Y, Ge Q, Zhai R, Sun R, Ji JB, Mao JW (2018) Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel-tungsten catalysts: influenced by hydroxy groups. Fuel 230:332–343

    Article  CAS  Google Scholar 

  38. Wang AQ, Zhang T (2013) One-pot conversion of cellulose to ethylene glycol with multifunctional tungtsen-based catalysts. Acc Chem Res 46:1377–1386

    Article  CAS  Google Scholar 

  39. Fabičovicová K, Malter O, Lucas M, Claus P (2014) Hydrogenolysis of cellulose to valuable chemicals over activated carbon supported mono- and bimetallic nickel/tungsten catalysts. Green Chem 16:3580–3588

    Article  Google Scholar 

  40. Ooms R, Dusselier M, Geboers JA, Beeck BOD, Verhaeven R, Gobechiya E, Martens JA, Redlc A, Sels BF (2014) Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chem 16:695–707

    Article  CAS  Google Scholar 

  41. Cornelis VDW, Duan XZ, Skeie Liland I, Walmsley JC, Zhu J, Wang AQ, Zhang T, Chen D (2015) ZnO-carbon-nanotube composite supported nickel catalysts for selective conversion of cellulose into vicinal diols. ChemCatChem 7:2991–2999

    Article  Google Scholar 

  42. Quan GX, Wang H, Zhu F, Yan JL (2018) Porous biomass carbon coated with SiO2 as high performance electrodes for capacitive deionization. BioResources 13:437–449

    CAS  Google Scholar 

  43. Chen XL, Zheng J, Zhong X, Jin YH, Zhuang GL, Li XN, Deng SW, Wang JG (2017) Tuning the confinement space of N-carbon shell-coated ruthenium nanoparticles: highly efficient electrocatalysts for hydrogen evolution reaction. Catal Sci Technol 7:4964–4970

    Article  CAS  Google Scholar 

  44. Gao J, He CC, Liu JG, Ren PJ, Liu HB, Feng JY, Zou ZG, Yin Z, Tan XY (2018) Polymerizable ionic liquid as a precursor for N, P co-doped carbon toward the oxygen reduction reaction. Catal Sci Technol 8:1142–1150

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Project of Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing (Grant No. 2016KF0035, China); Science and Technology Project of Zhejiang Province (Grant No. 2017C37049, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuqian Xiao or Jianwei Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Zhang, Q., Chen, T. et al. Nickel–Tungsten Supported on Thin Carbon Coated SiO2 Nanosphere for Cellulose Conversion to Lower Polyols. Catal Lett 148, 3757–3770 (2018). https://doi.org/10.1007/s10562-018-2582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2582-2

Keywords

Navigation