Skip to main content
Log in

A Novel Synthesis Method of Al/Cr Pillared Clay and its Application in the Catalytic Wet Air Oxidation of Phenol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Natural bentonite clay was pillared with Al and Cr polycations (Al-PILCs and Cr-PILCs) as well as with both Al and Cr mixed polycations (Al/Cr-PILCs) at different Al/Cr molar ratios. The structural and textural properties of the pillared clay catalysts were characterized by various techniques, such as high resolution scanning electron microscopy with energy dispersive system, powder X-ray diffraction, adsorption–desorption of N2 at − 196 °C, Fourier transform infrared spectroscopy, thermogravimetric analysis, cation exchange capacity and zeta potential. The obtained results showed that the intercalation of polycations in the interlamellar space of clay led to changes in the clay properties, basal spacing and specific surface area of a mixed PILCs were higher compared to single PILCs. Moreover, diffractograms of the Cr-PILCs confirmed the presence of a Cr2O3 phase. The catalytic wet air oxidation (CWAO) of the phenol was studied in a batchwise slurry reactor, at the experimental conditions of 100 °C temperature, 10 bar oxygen (O2) partial pressure, at pH 3.0, 100 mg/L concentration and 0.4 g of catalyst. All catalysts were analysed to determine the conversion of phenol and removal of total organic carbon (TOC). The results showed that, Al-PILCs displayed higher removal of phenol and TOC conversion than Cr-PILCs. In the case of mixed Al/Cr-PILCs, maximum removal values of phenol and TOC conversion were achieved with Al/Cr molar ratio of 1:1. Moreover, aromatic intermediate products as catechol, hydroquinone and benzoquinones which are identified in the beginning of the phenol oxidation oxidized into short-chain carboxylic acids such as oxalic acid, maleic acid, formic acid, acetic acid and malonic acid. The obtained results demonstrate the potential of Al/Cr-PILCs catalyst as robust and cheap catalyst for CWAO of phenol under mild reaction conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ye W, Zhao B, Gao H, Huang J, Zhang X (2016) Preparation of highly efficient and stable Fe,Zn,Al-pillared montmorillonite as heterogeneous catalyst for catalytic wet peroxide oxidation of Orange II. J Porous Mater 23:301–310. https://doi.org/10.1007/s10934-015-0082-y

    Article  CAS  Google Scholar 

  2. Sassi H, Lafaye G, Ben Amor H, Gannouni A, Jeday MR, Barbier J (2017) Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation. Front Environ Sci Eng 12:2. https://doi.org/10.1007/s11783-017-0971-1

    Article  CAS  Google Scholar 

  3. Zhu J, Wen K, Wang Y, Ma L, Su X, Zhu R, Xi Y, He H (2018) Superior thermal stability of Keggin-Al30pillared montmorillonite: A comparative study with Keggin-Al13pillared montmorillonite. Microporous Mesoporous Mater 265:104–111. https://doi.org/10.1016/j.micromeso.2018.02.007

    Article  CAS  Google Scholar 

  4. Li J, Hu M, Zuo S, Wang X (2018) Catalytic combustion of volatile organic compounds on pillared interlayered clay (PILC)-based catalysts. Curr Opin Chem Eng 20:93–98. https://doi.org/10.1016/j.coche.2018.02.001

    Article  Google Scholar 

  5. Moma J, Baloyi J, Ntho T (2018) Synthesis and characterization of an efficient and stable Al/Fe pillared clay catalyst for the catalytic wet air oxidation of phenol. RSC Adv 8:30115–30124. https://doi.org/10.1039/C8RA05825C

    Article  CAS  Google Scholar 

  6. Vicente MA, Gil A, Bergaya F (2013) Pillared clays and clay minerals. In: Bergaya F, Lagaly G (eds.) Handbook of Clay Science. Elsevier, Amsterdam, pp. 523–557. https://doi.org/10.1016/B978-0-08-098258-8.00017-1

    Chapter  Google Scholar 

  7. Bergaya F, Aouad A, Mandalia T (2006) Pillared clays and clay minerals. Dev Clay Sci 1:393–421. https://doi.org/10.1016/S1572-4352(05)01012-3

    Article  CAS  Google Scholar 

  8. Aouad A, Mandalia T, Bergaya F (2005) A novel method of Al-pillared montmorillonite preparation for potential industrial up-scaling. Appl Clay Sci 28:175–182. https://doi.org/10.1016/j.clay.2004.02.003

    Article  CAS  Google Scholar 

  9. Ding M, Zuo S, Qi C (2015) Preparation and characterization of novel composite AlCr-pillared clays and preliminary investigation for benzene adsorption. Appl Clay Sci 115:9–16. https://doi.org/10.1016/j.clay.2015.07.020

    Article  CAS  Google Scholar 

  10. Olaya A, Blanco G, Bernal S, Moreno S, Molina R (2009) Synthesis of pillared clays with Al–Fe and Al–Fe–Ce starting from concentrated suspensions of clay using microwaves or ultrasound, and their catalytic activity in the phenol oxidation reaction. Appl Catal B 93:56–65. https://doi.org/10.1016/j.apcatb.2009.09.012

    Article  CAS  Google Scholar 

  11. Sivaiah MV, Petit S, Brendlé J, Patrier P (2010) Rapid synthesis of aluminium polycations by microwave assisted hydrolysis of aluminium via decomposition of urea and preparation of Al-pillared montmorillonite. Appl Clay Sci 48:138–145. https://doi.org/10.1016/j.clay.2009.11.016

    Article  CAS  Google Scholar 

  12. Sanabria NR, Molina R, Moreno S (2009) Effect of Ultrasound on the structural and textural properties of Al–Fe pillared clays in a concentrated medium. Catal Lett 130:664. https://doi.org/10.1007/s10562-009-9956-4

    Article  CAS  Google Scholar 

  13. Rahmani F, Haghighi M, Estifaee P (2014) Synthesis and characterization of Pt/Al2O3–CeO2 nanocatalyst used for toluene abatement from waste gas streams at low temperature: Conventional vs. plasma–ultrasound hybrid synthesis methods. Microporous Mesoporous Mater 185:213–223. https://doi.org/10.1016/j.micromeso.2013.11.019

    Article  CAS  Google Scholar 

  14. Duong LV, Kloprogge JT, Frost RL, van Veen JAR (2007) An improved route for the synthesis of Al13-pillared montmorillonite catalysts. J Porous Mater 14:71–79. https://doi.org/10.1007/s10934-006-9010-5

    Article  CAS  Google Scholar 

  15. Tomul F (2016) The effect of ultrasonic treatment on iron–chromium pillared bentonite synthesis and catalytic wet peroxide oxidation of phenol. Appl Clay Sci 120:121–134. https://doi.org/10.1016/j.clay.2015.11.007

    Article  CAS  Google Scholar 

  16. Baloyi J, Ntho T, Moma J (2018) Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: a review. RSC Adv 8:5197–5211. https://doi.org/10.1039/C7RA12924F

    Article  CAS  Google Scholar 

  17. Gil SA, Korili R, Trujillano MA, Vicente (2011) A review on characterization of pillared clays by specific techniques. Appl Clay Sci 53:97–105. https://doi.org/10.1016/j.clay.2010.09.018

    Article  CAS  Google Scholar 

  18. Mata G, Trujillano R, Vicente MA, Belver C, Fernández-García M, Korili SA, Gil A (2007) Chromium-saponite clay catalysts: Preparation, characterization and catalytic performance in propene oxidation. Appl Catal A 327:1–12. https://doi.org/10.1016/j.apcata.2007.04.021

    Article  CAS  Google Scholar 

  19. Corporation GM (1977) United States Patent 19

  20. De León MA, Santos CDL, Latrónica L, Cesio AM, Volzone C, Castiglioni J, Sergio M (2014) High catalytic activity at low temperature in oxidative dehydrogenation of propane with Cr–Al pillared clay. Chem Eng J 241:336–343. https://doi.org/10.1016/j.cej.2013.10.086

    Article  CAS  Google Scholar 

  21. Cañizares P, Valverde JL, Kou MRS, Molina CB (1999) Synthesis and characterization of PILCs with single and mixed oxide pillars prepared from two different bentonites. A comparative study. Microporous Mesoporous Mater 29:267–281. https://doi.org/10.1016/S1387-1811(98)00295-9

    Article  Google Scholar 

  22. Gągol M, Przyjazny A, Boczkaj G (2018) Wastewater treatment by means of advanced oxidation processes based on cavitation: a review. Chem Eng J 338:599–627. https://doi.org/10.1016/j.cej.2018.01.049

    Article  CAS  Google Scholar 

  23. Baloyi J, Ntho T, Moma J (2018) Synthesis of highly active and stable Al/Zr pillared clay as catalyst for catalytic wet oxidation of phenol. J Porous Mater. https://doi.org/10.1007/s10934-018-0667-3

    Article  Google Scholar 

  24. Tomul F (2012) Adsorption and catalytic properties of Fe/Cr-pillared bentonites. Chem Eng J. https://doi.org/10.1016/j.cej.2012.01.094

    Article  Google Scholar 

  25. Tomul F (2011) Synthesis, characterization, and adsorption properties of Fe/Cr-pillared bentonites. Ind Eng Chem Res 50:7228–7240. https://doi.org/10.1021/ie102073v

    Article  CAS  Google Scholar 

  26. Tepmatee P, Siriphannon P (2013) Effect of preparation method on structure and adsorption capacity of aluminum pillared montmorillonite. Mater Res Bull 48:4856–4866. https://doi.org/10.1016/j.materresbull.2013.06.066

    Article  CAS  Google Scholar 

  27. Tomul F, Balci S (2009) Characterization of Al, Cr-pillared clays and CO oxidation. Appl Clay Sci 43:13–20. https://doi.org/10.1016/j.clay.2008.07.006

    Article  CAS  Google Scholar 

  28. Grim RE (1968) Clay mineralogy. McGraw-Hill, New York, p 596

    Google Scholar 

  29. Vhahangwele M, Mugera GW (2015) The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: simultaneous sorption of Co2+, Cu2+, Ni2+, Pb2+, and Zn2+ ions. J Environ Chem Eng 3:2416–2425. https://doi.org/10.1016/j.jece.2015.08.016

    Article  CAS  Google Scholar 

  30. Masindi V, Gitari MW, Tutu H, DeBeer M (2015) Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage. J Water Process Eng 8:227–240. https://doi.org/10.1016/j.jwpe.2015.11.001

    Article  Google Scholar 

  31. Gu L, Xu J, Lv L, Liu B, Zhang H, Yu X, Luo Z (2011) Dissolved organic nitrogen (DON) adsorption by using Al-pillared bentonite. Desalination 269:206–213. https://doi.org/10.1016/j.desal.2010.10.063

    Article  CAS  Google Scholar 

  32. Huang W, Chen J, He F, Tang J, Li D, Zhu Y, Zhang Y (2015) Effective phosphate adsorption by Zr/Al-pillared montmorillonite: insight into equilibrium, kinetics and thermodynamics. Appl Clay Sci 104:252–260. https://doi.org/10.1016/j.clay.2014.12.002

    Article  CAS  Google Scholar 

  33. Li K, Lei J, Yuan G, Weerachanchai P, Wang J-Y, Zhao J, Yang Y (2017) Fe-, Ti-, Zr- and Al-pillared clays for efficient catalytic pyrolysis of mixed plastics. Chem Eng J 317:800–809. https://doi.org/10.1016/j.cej.2017.02.113

    Article  CAS  Google Scholar 

  34. Chen D, Cen C, Feng J, Yao C, Li W, Tian S, Xiong Y (2016) Co-catalytic effect of Al-Cr pillared montmorillonite as a new SCR catalytic support. J Chem Technol Biotechnol 91:2842–2851. https://doi.org/10.1002/jctb.4899

    Article  CAS  Google Scholar 

  35. Bel Hadjltaief H, Da Costa P, Galvez ME, Ben Zina M (2013) Influence of operational parameters in the heterogeneous photo-Fenton discoloration of wastewaters in the presence of an iron-pillared clay. Ind Eng Chem Res 52:16656–16665. https://doi.org/10.1021/ie4018258

    Article  CAS  Google Scholar 

  36. Kloprogge JT (2017) Infrared and raman spectroscopies of pillared clays. In: Gates WP, Kloprogge JT, Madejová J, Bergaya F (eds.) Infrared Raman spectroscopy of clay minerals. Elsevier, Amsterdam, pp 411–446. https://doi.org/10.1016/B978-0-08-100355-8.00012-6

    Chapter  Google Scholar 

  37. Rocha MAL, Del G, Ángel G, Torres-Torres A, Cervantes A, Vázquez A, Arrieta JN, Beltramini (2015) Effect of the Pt oxidation state and Ce3+/Ce4+ ratio on the Pt/TiO2-CeO2 catalysts in the phenol degradation by catalytic wet air oxidation (CWAO). Catal Today 250:145–154. https://doi.org/10.1016/j.cattod.2014.09.016

    Article  CAS  Google Scholar 

  38. Arena F, Negro J, Parmaliana A, Spadaro L, Trunfio G (2007) Improved MnCeOx systems for the catalytic wet oxidation (CWO) of phenol in wastewater streams. Ind Eng Chem Res 46:6724–6731. https://doi.org/10.1021/ie0701118

    Article  CAS  Google Scholar 

  39. Yang S, Zhu W, Wang J, Chen Z (2008) Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor. J Hazard Mater 153:1248–1253. https://doi.org/10.1016/j.jhazmat.2007.09.084

    Article  CAS  PubMed  Google Scholar 

  40. Yang S, Cui Y, Sun Y, Yang H (2014) Graphene oxide as an effective catalyst for wet air oxidation of phenol. J Hazard Mater 280:55–62. https://doi.org/10.1016/j.jhazmat.2014.07.051

    Article  CAS  PubMed  Google Scholar 

  41. Davies D, Golunski S, Johnston P, Lalev G, Taylor SH (2018) Dominant effect of support wettability on the reaction pathway for catalytic wet air oxidation over Pt and Ru nanoparticle catalysts. ACS Catal 8:2730–2734. https://doi.org/10.1021/acscatal.7b04039

    Article  CAS  Google Scholar 

  42. Delgado JJ, Chen X, Pérez-Omil JA, Rodríguez-Izquierdo JM, Cauqui MA (2012) The effect of reaction conditions on the apparent deactivation of Ce–Zr mixed oxides for the catalytic wet oxidation of phenol. Catal Today 180:25–33. https://doi.org/10.1016/j.cattod.2011.03.069

    Article  CAS  Google Scholar 

  43. Zapico RR, Marín P, Díez FV, Ordóñez S (2017) Assessment of phenol wet oxidation on CuO/γ-Al2O3 catalysts: competition between heterogeneous and leached-copper homogeneous reaction paths. J Environ Chem Eng 5:2570–2578. https://doi.org/10.1016/j.jece.2017.04.050

    Article  CAS  Google Scholar 

  44. Guo J, Al-Dahhan M (2005) Modeling catalytic trickle-bed and upflow packed-bed reactors for wet air oxidation of phenol with phase change. Ind Eng Chem Res 44 (17): 6634–6642. https://doi.org/10.1021/ie050335v

    Article  CAS  Google Scholar 

  45. Álvarez PM, McLurgh D (2002) Plucinski, copper oxide mounted on activated carbon as catalyst for wet air oxidation of aqueous phenol. 1. Kinetic and mechanistic approaches. Ind Eng Chem Res 41:2147–2152. https://doi.org/10.1021/ie0104464

    Article  CAS  Google Scholar 

  46. Quintanilla A, Menéndez N, Tornero J, Casas JA, Rodríguez JJ (2008) Surface modification of carbon-supported iron catalyst during the wet air oxidation of phenol: Influence on activity, selectivity and stability. Appl Catal B 81:105–114. https://doi.org/10.1016/j.apcatb.2007.11.034

    Article  CAS  Google Scholar 

  47. Arena F, Italiano C, Spadaro L (2012) Efficiency and reactivity pattern of ceria-based noble metal and transition metal-oxide catalysts in the wet air oxidation of phenol, Appl Catal B. https://doi.org/10.1016/j.apcatb.2011.12.035

    Article  Google Scholar 

  48. Santos A, Yustos P, Quintanilla A, Rodríguez S, García-Ochoa F (2002) Route of the catalytic oxidation of phenol in aqueous phase. Appl Catal B 39:97–113. https://doi.org/10.1016/S0926-3373(02)00087-5

    Article  CAS  Google Scholar 

  49. Zazo JA, Casas JA, Mohedano AF, Gilarranz MA, Rodríguez JJ (2005) Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ Sci Technol 39:9295–9302. https://doi.org/10.1021/es050452h

    Article  CAS  PubMed  Google Scholar 

  50. Lal K, Garg A (2015) Catalytic wet oxidation of phenol under mild operating conditions: development of reaction pathway and sludge characterization. Clean Technol Environ Policy 17:199–210. https://doi.org/10.1007/s10098-014-0777-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We kindly acknowledge the financial support of the National Research Foundation (NRF)/ Department of Science and Technology (DST) of South Africa under Professional Development Programme (PDP) Project No. 96719 and Mineral Science Council of South Africa (Mintek) under CWO of Wastewater Project No. ADE 164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Moma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 468 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baloyi, J., Ntho, T. & Moma, J. A Novel Synthesis Method of Al/Cr Pillared Clay and its Application in the Catalytic Wet Air Oxidation of Phenol. Catal Lett 148, 3655–3668 (2018). https://doi.org/10.1007/s10562-018-2579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2579-x

Keywords

Navigation