Skip to main content

Advertisement

Log in

Performance of Bifunctional ZnZr/ZSM-5 Catalysts in the Alkylation of Benzene with Syngas

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel alkylation process of benzene with syngas was successfully developed to produce toluene and xylene over a bifunctional catalyst containing zinc oxide (ZnO), zirconium oxide (ZrO2) and ZSM-5 zeolite. Different characterizations, such as: SEM, TEM, XRD, XPS, FT-IR, NH3-TPD and N2 adsorption–desorption were used to measure the structure of Zn/Zr samples. ZnO was identified as the active component for the synthesis of methanol while ZrO2 was the promoting component which helped the good dispersion of ZnO in the system. The sample with 0.75 Zn/Zr molar ratio calcined at 500 °C exhibited the best catalytic performance, resulting in benzene conversion of 34.7%, toluene and xylene selectivity of 68.8% and 18.0% at 450 °C under 3.2 MPa. Based on the experimental results, the reaction mechanism was proposed as following: methanol was firstly formed on the surface of ZnO/ZrO2 from syngas, then it migrated onto ZSM-5 zeolite and reacted with benzene to form toluene. Furthermore, xylene was obtained through consecutive reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee SM, Choi WJ, Hwang K, Kim JH, Lee JY (2014) Effect of catalyst concentration and reaction time on one-step synthesized hypercrosslinked polyxylene. Macromol Res 22(5):481–486

    Article  CAS  Google Scholar 

  2. Niziolek AM, Onel O, Floudas CA (2016) Production of benzene, toluene, and xylenes from natural gas via methanol: process synthesis and global optimization. AIChE J 62(5):1531–1556

    Article  CAS  Google Scholar 

  3. Kim TW, Kim SY, Kim JC, Kim Y, Ryoo R, Kim CU (2016) Selective p-xylene production from biomass-derived dimethylfuran and ethylene over zeolite beta nanosponge catalysts. Appl Catal B 185:100–109

    Article  CAS  Google Scholar 

  4. Wang X, Xu J, Qi G, Li B, Wang C, Deng F (2013) Alkylation of benzene with methane over ZnZSM-5 zeolites studied with solid-state NMR spectroscopy. J Phys Chem C 117(8):4018–4023

    Article  CAS  Google Scholar 

  5. Yunsheng L, Zhenhao W, Zhenhao W, Fan Y, Xuedong Z (2017) Study on catalytic alkylation of benzene with methanol over ZSM-22 and ZSM-35. China Pet Process Petrochem Technol 19(4):38–46

    Google Scholar 

  6. Rakoczy J, Romotowski T (1993) Alkylation of benzene with methanol on zeolites: Infrared spectroscopy studies. Zeolites 13(4):256–260

    Article  CAS  Google Scholar 

  7. King ST, Garces JM (1987) In situ infrared study of alkylation of toluene with methanol on alkali cation-exchanged zeolites. J Catal 104(1):59–70

    Article  CAS  Google Scholar 

  8. Adebajo MO, Long MA, Frost RL (2004) Further evidence for the oxidative methylation of benzene with methane over zeolite catalysts. Catal Commun 5(3):125–130

    Article  CAS  Google Scholar 

  9. Hu H, Lyu J, Wang Q, Zhang Q, Cen J, Li X (2015) Alkylation of benzene with methanol over hierarchical porous ZSM-5: synergy effects of hydrogen atmosphere and zinc modification. RSC Adv 5(41):32679–32684

    Article  CAS  Google Scholar 

  10. Jiao F, Li J, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M, Miao S, Li J, Zhu Y, Xiao D, He T, Yang J, Qi F, Fu Q, Bao X (2016) Selective conversion of syngas to light olefins. Science 351(6277):1065–1068

    Article  CAS  Google Scholar 

  11. Zhang P, Tan L, Yang G, Tsubaki N (2017) One-pass selective conversion of syngas to para-xylene. Chem Sci 8(12):7941–7946

    Article  CAS  Google Scholar 

  12. Al-Rahbi AS, Williams PT (2017) Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char. Appl Energy 190:501–509

    Article  CAS  Google Scholar 

  13. Forman C, Gootz M, Wolfersdorf C, Meyer B (2017) Coupling power generation with syngas-based chemical synthesis. Appl Energy 198:180–191

    Article  CAS  Google Scholar 

  14. Mujeebu MA (2016) Hydrogen and syngas production by superadiabatic combustion—a review. Appl Energy 173:210–224

    Article  Google Scholar 

  15. Ding D, Yu J, Guo Q, Guo X, Mao H, Mao D (2018) Highly efficient synthesis of C2 + oxygenates from CO hydrogenation over Rh–Mn–Li/SiO2 catalyst: the effect of TiO2 promoter. Catal Lett 148(8):2619–2626

    Article  CAS  Google Scholar 

  16. Heinrich D, Raberg M, Steinbuchel A (2018) Studies on the aerobic utilization of synthesis gas (syngas) by wild type and recombinant strains of Ralstonia eutropha H16. Microb Biotechnol 11(4):647–656

    Article  CAS  Google Scholar 

  17. Todorova S, Su BL (2004) Effects of acidity and combination of Ga and Pt on catalytic behavior of Ga-Pt modified ZSM-5 catalysts in benzene alkylation with pure propane. Catal Today 93(1):417–424

    Article  Google Scholar 

  18. Llopis FJ, Sastre G, Corma A (2004) Xylene isomerization and aromatic alkylation in zeolites NU-87, SSZ-33, β, and ZSM-5: molecular dynamics and catalytic studies. J Catal 227(1):227–241

    Article  CAS  Google Scholar 

  19. Cheng K, Zhou W, Kang J, He S, Shi SL, Zhang QH, Pan Y, Wen W, Wang Y (2017) Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem 3(2):334–347

    Article  CAS  Google Scholar 

  20. Imai T, Prospect M (1984) Synthesis of alkylaromatic compounds. US Patent 4487984A

  21. Ou JDY, Waddick TJ (2002) Selective methylation to para-xylene using fuel syngas. US Patent 6459006B1

  22. Xuebin Z, Feng Z, Bin Z, Haohui G (2015) Alkylation activity of benzene with syngas over Cu-based catalysts. China Pet Process Petrochem Technol 17(1):31–38

    Google Scholar 

  23. Habibi MH, Askari E (2013) Spectrophotometric studies of photo-induced degradation of tertrodirect light blue (TLB) using a nanostructure zinc zirconate composite. J Ind Eng Chem 19(4):1400–1405

    Article  CAS  Google Scholar 

  24. Habibi MH, Askari E, Habibi M, Zendehdel M (2013) Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell. Spectrochim Acta A 104:197–202

    Article  Google Scholar 

  25. Tian S, Wang S, Wu Y, Gao J, Bai Y, Wang P, Xie H, Han Y, Tan Y (2015) Cation distribution in Zn–Cr spinel structure and its effects on synthesis of isobutanol from syngas: structure–activity relationship. J Mol Catal A 404–405:139–147

    Article  Google Scholar 

  26. Shu Z, Jiao X, Chen D (2013) Hydrothermal synthesis and selective photocatalytic properties of tetragonal star-like ZrO2 nanostructures. CrystEngComm 15(21):4288

    Article  CAS  Google Scholar 

  27. Ramarao SD, Murthy VRK (2015) Structural, Raman spectroscopic and microwave dielectric studies on Ni1−x(Zn1/2Zr1/2)xW1−xNbxO4 ceramic compounds with wolframite structure. Dalton Trans 44(5):2311–2324

    Article  CAS  Google Scholar 

  28. Zhang Z, Liao Z, Zhang G (2015) Degradation performance of a Keggin type Zn–Mo–Zr catalyst for acidic green B with ultrasonic waves. RSC Adv 5(77):63104–63110

    Article  CAS  Google Scholar 

  29. Zhang R, Duan T, Wang B, Ling L (2016) Unraveling the role of support surface hydroxyls and its effect on the selectivity of C2 species over Rh/γ-Al2O3 catalyst in syngas conversion: a theoretical study. Appl Surf Sci 379:384–394

    Article  CAS  Google Scholar 

  30. Khan I, Khan S, Nongjai R, Ahmed H, Khan W (2013) Structural and optical properties of gel-combustion synthesized Zr doped ZnO nanoparticles. Opt Mater 35(6):1189–1193

    Article  CAS  Google Scholar 

  31. Khalaf MM, Abdelhamid AA (2015) Sol–gel derived mixed oxide zirconia: titania green heterogeneous catalysts and their performance in acridine derivatives synthesis. Catal Lett 146(3):645–655

    Article  Google Scholar 

  32. Aghabeygi S, Khademi-Shamami M (2018) ZnO/ZrO2 nanocomposite: sonosynthesis, characterization and its application for wastewater treatment. Ultrason Sonochem 41:458–465

    Article  CAS  Google Scholar 

  33. Kant A, He Y, Jawad A, Li X, Rezaei F, Smith JD, Rownaghi AA (2017) Hydrogenolysis of glycerol over Ni, Cu, Zn, and Zr supported on H-beta. Chem Eng J 317:1–8

    Article  CAS  Google Scholar 

  34. Žilková N, Bejblova M, Gil B, Zones SI, Burton AW, Chen CY, Musilova-Pavackova Z, Kosova G, Cejka J (2009) The role of the zeolite channel architecture and acidity on the activity and selectivity in aromatic transformations: the effect of zeolite cages in SSZ-35 zeolite. J Catal 266(1):79–91

    Article  Google Scholar 

  35. Song H, Laudenschleger D, Carey JJ, Ruland H, Nolan M, Muhler M (2017) Spinel-structured ZnCr2O4 with excess Zn is the active ZnO/Cr2O3 catalyst for high-temperature methanol synthesis. ACS Catal 7(11):7610–7622

    Article  CAS  Google Scholar 

  36. Chafik T, Bianchi D, Teichner SJ (1995) On the mechanism of the methanol synthesis involving a catalyst based on zirconia support. Top Catal 2(1–4):103–116

    Article  CAS  Google Scholar 

  37. Zaman SF, Smith KJ (2010) A DFT study of the effect of K and SiO2 on syngas conversion to methane and methanol over an Mo6P3 cluster. Mol Simul 36(2):118–126

    Article  CAS  Google Scholar 

  38. Zhu YA, Chen D, Zhou XG, Yuan WK (2009) DFT studies of dry reforming of methane on Ni catalyst. Catal Today 148(3–4):260–267

    Article  CAS  Google Scholar 

  39. Wen Z, Yang D, He X, Li Y, Zhu X (2016) Methylation of benzene with methanol over HZSM-11 and HZSM-5: a density functional theory study. J Mol Catal A 424:351–357

    Article  CAS  Google Scholar 

  40. Sun Y, Sermon PA (1994) Cu-doped ZrO2 aerogel: a novel catalyst for CO hydrogenation to CH3OH. Top Catal 1(1–2):145–151

    Article  CAS  Google Scholar 

  41. Lee S, Kim D, Lee J, Choi Y, Suh Y, Lee C, Kim TJ, Lee SJ, Lee JK (2013) An in situ methylation of toluene using syngas over bifunctional mixture of Cr2O3/ZnO and HZSM-5. Appl Catal A 466:90–97

    Article  CAS  Google Scholar 

  42. Forester TR, Howe RF (1987) In situ FTIR studies of methanol and dimethyl ether in ZSM-5. Cheminform 109:5076–5082

    CAS  Google Scholar 

  43. Saepurahman, Visur M, Olsbye U, Bjorgen M, Svelle S (2011) In situ FT-IR mechanistic investigations of the zeolite catalyzed methylation of benzene with methanol: H-ZSM-5 versus H-beta. Top Catal 54(16–18):1293–1301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was sponsored financially by Shanghai Postdoctoral Scientific Program and the National Natural Science Foundation of China (No. 21776076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Yang, F., Liu, X. et al. Performance of Bifunctional ZnZr/ZSM-5 Catalysts in the Alkylation of Benzene with Syngas. Catal Lett 148, 3618–3627 (2018). https://doi.org/10.1007/s10562-018-2570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2570-6

Keywords

Navigation