Skip to main content
Log in

Synthesis and Electrochemical Property of PtPdCu Nanoparticles with Truncated-Octahedral Morphology

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, a PtPdCu catalyst for formic acid oxidation was synthesized through a one-pot synthesis method. The PtPdCu nanoparticles with truncated-octahedral morphology were obtained by reducing Pt(acac)2, Pd(acac)2 and Cu(acac)2 in ethylene glycol solution under the effects of PVP and KBr. To determine the electrocatalytic performance of the PtPdCu nanoparticles with truncated-octahedral morphology, cyclic voltammetry was carried out in solutions of 0.5 M H2SO4 and 0.5 M H2SO4 containing 1 M HCOOH. According to the electrochemical results, the PtPdCu nanoparaticles possessed higher activity and stability toward the oxidation of formic acid than commercial Pt black due to the addition of Cu and Pd elements.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fu GT, Xia BY, Ma RG, Chen Y, Tang YW, Lee JM (2015) Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 12:824–832

    Article  CAS  Google Scholar 

  2. Jiang X, Yan XX, Ren WY, Jia YF, Chen JN, Sun DM, Xu L, Tang YW (2016) Porous AgPt@Pt nanooctahedra as an efficient catalyst toward formic acid oxidation with predominant dehydrogenation pathway. ACS Appl Mater Inter 8(45):31076–31082

    Article  CAS  Google Scholar 

  3. Saleem F, Ni B, Yong Y, Gu L, Wang X (2016) Ultra-small tetrametallic Pt-Pd-Rh-Ag nanoframes with tunable behavior for direct formic acid/methanol oxidation. Small 12(38):5261–5268

    Article  CAS  Google Scholar 

  4. Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182(1):124–132

    Article  CAS  Google Scholar 

  5. Taylor AK, Perez DS, Zhang X, Pilapil BK, Engelhard MH, Gates BD, Rider DA (2017) Block copolymer templated synthesis of PtIr bimetallic nanocatalysts for the formic acid oxidation reaction. J Mater Chem A 5(40):21514–21527

    Article  CAS  Google Scholar 

  6. Fu GT, Liu HM, You NK, Wu JY, Sun DM, Xu L, Tang YW, Chen Y (2016) The dendritic platinum–copper bimetallic nanoassemblies with tunable composition and structure: arginine driven self-assembly and their enhanced electrocatalytic activity. Nano Res 9(3):755–765

    Article  CAS  Google Scholar 

  7. Kim J, Roh CW, Sahoo SK, Yang S, Bae J, Woo J, Lee HH (2018) Highly durable platinum single-atom alloy catalyst for electrochemical reactions. Adv Energy Mater 8(1):1701476

    Article  Google Scholar 

  8. Liu HY, Song YJ, Lia SS, Li J, Liu Y, Jiang YB, Guo XW (2016) Synthesis of core/shell structured Pd3Au@Pt/C with enhanced electrocatalytic activity by regioselective atomic layer deposition combined with a wet chemical method. RSC Adv 6(71):66712–66720

    Article  CAS  Google Scholar 

  9. Cao Y, Yang Y, Shan Y, Fu C, Long NV, Huang Z, Guo X, Nogami M (2015) Large-scale template-free synthesis of ordered mesoporous platinum nanocubes and their electrocatalytic property. Nanoscale 7(46):19461–19467

    Article  CAS  Google Scholar 

  10. Mohammad AM, El-Nagar GA, Al-Akraa IM, El-Deab MS, El-Anadouli BE (2015) Towards improving the catalytic activity and stability of platinum-based anodes in direct formic acid fuel cells. Int J Hydrogen Energy 40(24):7808–7816

    Article  CAS  Google Scholar 

  11. Dai CQ, Yang Y, Zhao Z, Fisher A, Liu ZP, Cheng DJ (2017) From mixed to three-layer core/shell PtCu nanoparticles: ligand-induced surface segregation to enhance electrocatalytic activity. Nanoscale 9(26):8945–8951

    Article  CAS  Google Scholar 

  12. Wang JF, Liu YY, Okada T (2016) Novel platinum-macrocycle composite catalysts for direct formic acid fuel cells. J Appl Electrochem 46(8):901–905

    Article  Google Scholar 

  13. Chen GQ, Liao MY, Yu BQ, Li YH, Wang D, You GR, Zhong CJ, Chen BH (2012) Pt decorated PdAu/C nanocatalysts with ultralow Pt loading for formic acid electrooxidation. Int J Hydrogen Energy 37(13):9959–9966

    Article  CAS  Google Scholar 

  14. Song YH, Bi CX, Wu CS, He HP, Huang LH, Wang DY, Xia HB (2017) Promoting charge transfer in hyperbranched, trisoctahedral-shaped core-shell Au@PdPt nanoparticles by facet-dependent construction of transition layers as high performance electrocatalysts. J Mater Chem A 5(35):18878–18887

    Article  CAS  Google Scholar 

  15. Mao JJ, Chen WX, He DS, Wan JW, Pei JJ, Dong JC, Wang Y, An PF, Jin Z, Xing W, Tang HL, Zhuang ZB, Liang X, Huang Y, Zhou G, Wang LY, Wang DS, Li YD (2017) Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci Adv 3(8):e1603068

    Article  Google Scholar 

  16. Choi SI, Herron JA, Scaranto J, Huang H, Wang Y, Xia X, Lv T, Park J, Peng HC, Mavrikakis M (2015) A comprehensive study of formic acid oxidation on palladium nanocrystals with different types of facets and twin defects. ChemCatChem 7(14):2077–2084

    Article  CAS  Google Scholar 

  17. Klinkova A, Luna PD, Sargent EH, Kumacheva E, Cherepanov PV (2017) Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. J Mater Chem A 5(23):11582–11585

    Article  CAS  Google Scholar 

  18. Zheng FL, Luk SY, Kwong TL, Yung KF (2016) Synthesis of hollow PtAg alloy nanospheres with excellent electrocatalytic performances towards methanol and formic acid oxidations. RSC Adv 6(50):44902–44907

    Article  CAS  Google Scholar 

  19. Zhu J, Zheng X, Wang J, Wu ZX, Han LL, Lin RQ, Xin HLL, Wang DL (2015) Structurally ordered Pt-Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation. J Mater Chem A 3:22129–22135

    Article  CAS  Google Scholar 

  20. Chen S, Su HY, Wang YC, Wu WL, Zeng J (2015) Size-controlled synthesis of platinum–copper hierarchical trigonal bipyramid nanoframes. Angew Chem Int Ed 54(1):108–113

    Article  CAS  Google Scholar 

  21. Xia BY, Wu HB, Li N, Yan Y, Lou XW, Wang X (2015) One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew Chem Int Ed 54(12):3797–3801

    Article  CAS  Google Scholar 

  22. Cai Z, Lu ZY, Bi YM, Li YP, Kuang Y, Sun XM (2016) Superior anti-CO poisoning capability: Au-decorated PtFe nanocatalysts for high-performance methanol oxidation. Chem Commun 52(20):3903–3906

    Article  CAS  Google Scholar 

  23. Ye W, Chen SM, Ye MS, Ren CH, Ma J, Long R, Wang CM, Yang J, Song L, Xiong YJ (2017) Pt4PdCu0.4 alloy nanoframes as highly efficient and robust bifunctional electrocatalysts for oxygen reduction reaction and formic acid oxidation. Nano Energy 39:532–538

    Article  CAS  Google Scholar 

  24. Jiang B, Li CL, Malgras V, Yamauchi Y (2018) Synthesis of ternary PtPdCu spheres with threedimensional nanoporous architectures toward superior electrocatalysts. J Mater Chem A 3(35):18053–18058

    Article  Google Scholar 

  25. Su YQ, Yu XF, Li LL, Dong LL, Yan H, Zhao JL (2017) Synthesis and electro-catalytic activity of Pt-Co nanoflowers. J Nanopart Res 19(7):247

    Article  Google Scholar 

  26. Dong LL, Li LL, Yu XF, Lv PG, Zhao JL (2017) Synthesis and electrocatalytic properties of Pt-Cu worm-like nanowires. Catal Lett 147(8):2127–2133

    Article  CAS  Google Scholar 

  27. Fan Y, Zhang Y, Cui Y, Wang JL, Wei MM, Zhang XK, Li W (2016) Porous ternary PtPdCu alloy with spherical network structure for electrocatalytic methanol oxidation. RSC Adv 6(86):83373–83379

    Article  CAS  Google Scholar 

  28. Gong MX, Jiang X, Xue TY, Shen TY, Xu L, Sun DM, Tang YW (2015) PtCu nanodendrite-assisted synthesis of PtPdCu concave nanooctahedra for efficient electrocatalytic methanol oxidation. Catal Sci Technol 5(12):5105–5109

    Article  CAS  Google Scholar 

  29. Anderson R, Zhang L, Loussaert J, Frenkel A, Henkelman G, Crooks R (2013) An experimental and theoretical investigation of the inversion of Pd@Pt core@shell dendrimer-encapsulated nanoparticles. ACS Nano 7(10):9345–9353

    Article  CAS  Google Scholar 

  30. Greeley J, Stephens IE, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Alloys of platinumand early transition metals as oxygen reduction electrocatalysts. Nat Chem 1(7):552–556

    Article  CAS  Google Scholar 

  31. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247

    Article  CAS  Google Scholar 

  32. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110(6):3767–3804

    Article  CAS  Google Scholar 

  33. Carino EV, Knecht MR, Crooks RM (2009) Quantitative analysis of the stability of Pd dendrimer-encapsulated nanoparticles. Langmuir 25(17):10279–10284

    Article  CAS  Google Scholar 

  34. Huang XQ, Zhang HH, Guo CY, Zhou ZY, Zheng NF (2009) Simplifying the creation of hollow metallic nanostructures: one-pot synthesis of hollow palladium/platinum single-crystalline nanocubes. Angew Chem Int Ed 48(26):4808–4812

    Article  CAS  Google Scholar 

  35. Yu XF, Wang DS, Peng Q, Li YD (2011) High performance electrocatalyst: Pt-Cu hollow nanocrystals. Chem Commun 47(28):8094–8096

    Article  CAS  Google Scholar 

  36. Wang C, Daimon H, Onodera T, Koda T, Sun SH (2008) A general approach to the size-and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew Chem 47(19):3588–3591

    Article  CAS  Google Scholar 

  37. Jin MS, Zhang H, Xie ZX, Xia YN (2011) Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ Sci 5(4):6352–6357

    Article  Google Scholar 

  38. Hong W, Shang CS, Wang J, Wang EK (2015) Trimetallic PtCuCo hollow nanospheres with a dendritic shell for enhanced electrocatalytic activity toward ethylene glycol electrooxidation. Nanoscale 7(22):9985–9989

    Article  CAS  Google Scholar 

  39. Bu LZ, Shao Q, Guo EB, Yao J, Huang JL XQ (2017) PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J Am Chem Soc 139(28):9576–9582

    Article  CAS  Google Scholar 

  40. Li YS, Hao FR, Wang YH, Zhang YH, Ge CW, Lu TH (2014) Facile synthesis of octahedral Pt-Pd nanoparticles stabilized by silsesquioxane for the electrooxidation of formic acid. Electrochim Acta 133(7):302–307

    Article  CAS  Google Scholar 

  41. Kim Y, Kim HJ, Yong SK, Choi SM, Min HS, Kim WB (2012) Shape- and composition-sensitive activity of Pt and PtAu Catalysts for formic acid electrooxidation. J Phys Chem C 116(34):18093–18100

    Article  CAS  Google Scholar 

  42. Mao JJ, Cao T, Chen YJ, Wu YE, Chen C, Peng Q, Wang DS, Li YD (2015) Seed-mediated synthesis of hexameric octahedral PtPdCu nanocrystals with high electrocatalytic performance. Chem Commun 51(84):15406–15409

    Article  CAS  Google Scholar 

  43. Tian LL, Chen YL, Wu SP, Cai YH, Liu HD, Zhang J, Yang C, He G, Xiao W, Li L, Lin L, Cheng Y (2017) One-pot synthesis of cubic PtPdCu nanocages with enhanced electrocatalytic activity for reduction of H2O2. RSC Adv 7(54):34071–34076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Natural Science Foundation of Hebei Province (B2015202305), the National Natural Science Foundation of China (51501054 and 21603052), and the Key Basic Research Program of Hebei Province of China (17964401D).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofei Yu or Jianling Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 231 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, P., Li, L., Yang, X. et al. Synthesis and Electrochemical Property of PtPdCu Nanoparticles with Truncated-Octahedral Morphology. Catal Lett 148, 3779–3786 (2018). https://doi.org/10.1007/s10562-018-2568-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2568-0

Keywords

Navigation