Skip to main content
Log in

Water Adsorption and Decomposition on Co(0001) Surface: A Computational Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Water adsorption and decomposition on the Co(0001) surface has been systematically studied by spin-polarized density functional theory calculations and atomic thermodynamics. H2O adsorption mechanism has been analyzed by partial density of states. The possible structure of adsorbed H2O molecules comprised of monomer-hexamer have been investigated and the phase diagram shows that only two configurations are stable thermodynamically: clean Co(0001) surface and H2O hexamer adsorption. The competition between the ability of a H2O molecule to bond with the substrate and its ability to act as a H-bond acceptor leads to the symmetry-breaking bond alteration in the hexamer structure. In addition, the interaction among adsorbed H2O molecules can help stabilize adsorption configurations by forming H-bonds. Presence of O species has a great influence on the decomposition of water and can significantly lower the activation barrier of H–OH bond cleavage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thiel PA, Madey TE (1987) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7:211–385

    Article  CAS  Google Scholar 

  2. Verdaguer A, Sacha GM, Bluhm H, Salmeron M (2006) Molecular structure of water at interfaces: wetting at the nanometer scale. Chem Rev 106:1478–1510

    Article  CAS  PubMed  Google Scholar 

  3. Michaelides A (2006) Density functional theory simulations of water-metal interfaces: waltzing waters, a novel 2D ice phase, and more. Appl Phys A 85:415–425

    Article  CAS  Google Scholar 

  4. Morgenstern K, Nieminen J (2004) Imaging water on Ag(111): field induced reorientation and contrast inversion. J Chem Phys 120:10786–10791

    Article  CAS  PubMed  Google Scholar 

  5. Nie S, Feibelman PJ, Bartelt NC, Thürmer K (2010) Pentagons and heptagons in the first water layer on Pt(111). Phys Rev Lett 105:1–4

    Article  CAS  Google Scholar 

  6. Mitsui T, Rose MK, Fomin E et al (2002) Water diffusion and clustering on Pd(111). Science 297:1850–1852

    Article  CAS  PubMed  Google Scholar 

  7. Michaelides A, Morgenstern K (2007) Ice nanoclusters at hydrophobic metal surfaces. Nat Mater 6:597–601

    Article  CAS  PubMed  Google Scholar 

  8. Carrasco J, Michaelides A, Forster M et al (2009) A one-dimensional ice structure built from pentagons. Nat Mater 8:427–431

    Article  CAS  PubMed  Google Scholar 

  9. Shiotari A, Sugimoto Y (2017) Ultrahigh-resolution imaging of water networks by atomic force microscopy. Nat Commun 8:1–7

    Article  CAS  Google Scholar 

  10. Komeda T, Fukidome H, Kim Y et al (2002) Scanning tunneling microscopy study of water molecules on Pd(110) at cryogenic temperature. Jpn J Appl Phys 41:4932–4935

    Article  CAS  Google Scholar 

  11. Nezafati M, Cho K, Giri A, Kim C (2016) DFT study on the water molecule adsorption and the surface dissolution behavior of Mg alloys. Mater Chem Phys 182:347–358

    Article  CAS  Google Scholar 

  12. Ren J, Meng S (2006) Atomic structure and bonding of water overlayer on Cu(110): the borderline for intact and dissociative adsorption. J Am Chem Soc 128:9282–9283

    Article  CAS  PubMed  Google Scholar 

  13. Tang QL, Chen ZX (2007) Influence of aggregation, defects, and contaminant oxygen on water dissociation at Cu(110) surface: a theoretical study. J Chem Phys 127:104707

    Article  CAS  PubMed  Google Scholar 

  14. Yu X, Zhang X, Wang H, Feng G (2017) High coverage water adsorption on the CuO(111) surface. Appl Surf Sci 425:803–810

    Article  CAS  Google Scholar 

  15. Hodgson A, Haq S (2009) Water adsorption and the wetting of metal surfaces. Surf Sci Rep 64:381–451

    Article  CAS  Google Scholar 

  16. Tu YB, Tao ML, Sun K, Wang JZ (2018) Effects of an electric field on the adsorption of water molecules on the Cd(0001) surface. Surf Sci 668:1–6

    Article  CAS  Google Scholar 

  17. Meng S, Wang EG, Gao S (2004) Water adsorption on metal surfaces: a general picture from density functional theory studies. Phys Rev B 69:1–13

    Article  CAS  Google Scholar 

  18. Wang H, Sun X, Han E-H (2018) The interactions between high temperature water and Fe3O4(111) by first-principles molecular dynamics simulation. Int J Electrochem Sci 13:2430–2440

    Article  CAS  Google Scholar 

  19. Mirabella F, Zaki E, Ivars-Barceló F et al (2018) Cooperative formation of long-range ordering in water ad-layers on Fe3O4(111) surfaces. Angew Chem Int Ed 57:1409–1413

    Article  CAS  Google Scholar 

  20. Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  21. Torres Galvis HM, De Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3:2130–2149

    Article  CAS  Google Scholar 

  22. Ruckenstein E, Wang HY (2002) Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/γ-Al2O3 catalysts. J Catal 205:289–293

    Article  CAS  Google Scholar 

  23. Heras JM, Papp H, Spiess W (1982) Face specificity of the H2O adsorption and decomposition on Co surfaces—a LEED, UPS, sp and TPD study. Surf Sci 117:590–604

    Article  CAS  Google Scholar 

  24. Grellner F, Klingenberg B, Borgmann D, Wedler G (1994) Interaction of H2O with Co(1120): a photoelectron spectroscopic study. Surf Sci 312:143–150

    Article  CAS  Google Scholar 

  25. Xu L, Ma Y, Zhang Y et al (2010) Water Adsorption on a Co (0001) Surface. J Phys Chem C 114:17023–17029

    Article  CAS  Google Scholar 

  26. Heras JM, Albano EV (1981) Work function changes of cobalt films at 77 K upon water adsorption. Appl Surf Sci 7:332–346

    Article  CAS  Google Scholar 

  27. Sun C, Liu L-M, Selloni A et al (2010) Titania-water interactions: a review of theoretical studies. J Mater Chem 20:10319

    Article  CAS  Google Scholar 

  28. Calzolari A, Catellani A (2009) Water adsorption on nonpolar ZnO(1010) surface: a microscopic understanding. J Phys Chem C 113:2896–2902

    Article  CAS  Google Scholar 

  29. Parkinson GS (2016) Iron oxide surfaces. Surf Sci Rep 71:272–365

    Article  CAS  Google Scholar 

  30. Liu H, Di Valentin C (2018) Bulk-terminated or reconstructed Fe3O4(001) surface: water makes a difference. Nanoscale 4:11021–11027

    Article  Google Scholar 

  31. Meier M, Hulva J, Jakub Z et al (2018) Water agglomerates on Fe3O4 (001). Proc Natl Acad Sci USA 115:E5642–E5650

    Article  PubMed  CAS  Google Scholar 

  32. Parkinson GS, Dohnalek Z, Smith RS, Kay BD (2010) Reactivity of Fe0 atoms with and clusters with D2O over FeO(111). J Phys Chem C 114:17136–17141

    Article  CAS  Google Scholar 

  33. Schwarz M, Faisal F, Mohr S et al (2018) Structure-dependent dissociation of water on cobalt oxide. J Phys Chem Lett 2018:4–10

  34. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 508:508–517

    Article  Google Scholar 

  35. Delley B (2000) From molecules to solids with the from molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  36. Pack JD, Monkhorst HJ (1977) Special points for Brillouin-zone integrations. Phys Rev B 16:1748–1749

    Article  Google Scholar 

  37. Halgren TA, Lipscohlb WN (1977) The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett 49:225–232

    Article  CAS  Google Scholar 

  38. Michaelides A (2007) Simulating ice nucleation, one molecule at a time, with the “DFT microscope”. Faraday Discuss 136:287–297

    Article  CAS  PubMed  Google Scholar 

  39. Merte LR, Bechstein R, Peng G et al (2014) Water clustering on nanostructured iron oxide films. Nat Commun 5:1–9

    Article  CAS  Google Scholar 

  40. Reuter K, Scheffler M (2001) Composition, structure and stability of RuO2(110) as a function of oxygen pressure. Phys Rev B 65:1–11

    Article  CAS  Google Scholar 

  41. Reuter K, Scheffler M (2003) Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2. Phys Rev B 68:1–11

    Article  CAS  Google Scholar 

  42. Stull DR, Prophet H (1971) JANAF thermochemical tables, DTIC Document

  43. Parkinson GS, Novotný Z, Jacobson P et al (2011) Room temperature water splitting at the surface of magnetite. J Am Chem Soc 133:12650–12655

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzhe Yu.

Ethics declarations

Conflict of interest

There is no conflict of interest about this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7228 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Huang, H. & Yu, Y. Water Adsorption and Decomposition on Co(0001) Surface: A Computational Study. Catal Lett 148, 3126–3133 (2018). https://doi.org/10.1007/s10562-018-2508-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2508-z

Keywords

Navigation