Skip to main content

Advertisement

Log in

Selective Production of Terminally Unsaturated Methyl Esters from Lactones Over Metal Oxide Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Metal oxide catalysts were studied for their selectivity for the production of a terminally unsaturated methyl ester, methyl 5-hexenoate (M5H), from a 6 carbon, 6-membered ring lactone, δ-hexalactone (DHL). A 15 wt% Cs/SiO2 catalyst had a selectivity of 55% to M5H. This selectivity was the highest of the metal oxide catalysts studied, which were Cs/SiO2, MgO, SrO, CeO2, ZrO2, Ta2O5, MgAl2O4, and a Mg–Zr mixed oxide. The Cs/SiO2 catalyst was utilized for the ring-opening of γ-valerolactone (GVL), a 5 carbon, 5-membered ring lactone. The catalyst was 88% selective to the terminally unsaturated methyl ester, methyl 4-pentenoate (M4P). Weight hourly space velocity studies determined that the unsaturated ester distributions remained constant and no C=C double bond isomerization occurred. Liquid phase transesterification reactions with DHL and methanol and nuclear magnetic resonance spectroscopy confirmed that DHL undergoes ring-opening transesterification to produce an ω-1 hydroxy methyl ester, methyl 5-hydroxyhexanoate (M5HH). Liquid phase transesterification reactions and thermochemistry calculations established that the equilibrium for GVL transesterification with methanol was favored towards the ring-closed lactone instead of the ring-opened hydroxy ester because of the decreased ring strain of GVL compared to DHL. The difference in terminally unsaturated methyl ester selectivity between GVL and DHL manifests from the difference in ring-strain energy. DHL passes through the M5HH intermediate as a result of greater ring strain, while the production of M4P from GVL most likely occurs through a direct, concerted mechanism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nikolau BJ, Perera MADN, Brachova L, Shanks B (2008) Plant J 54:536–545

    Article  CAS  PubMed  Google Scholar 

  2. Shanks BH (2007) ACS Chem Biol 2:533–535

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz TJ, O’Neill BJ, Shanks BH, Dumesic JA (2014) ACS Catal 4:2060–2069

    Article  CAS  Google Scholar 

  4. Schwartz TJ, Shanks BH, Dumesic JA (2016) Curr Opin Biotechnol 38:54–62

    Article  CAS  PubMed  Google Scholar 

  5. Bowen CH, Bonin J, Kogler A, Barba-Ostria C, Zhang F (2016) ACS Synth Biol 5:200–206

    Article  CAS  PubMed  Google Scholar 

  6. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Nature 476:355–359

    Article  CAS  PubMed  Google Scholar 

  7. Cardenas J, Da Silva NA (2014) Metab Eng 25:194–203

    Article  CAS  PubMed  Google Scholar 

  8. Jez JM, Bowman ME, Noel JP (2002) Proc Natl Acad Sci USA 99:5319–5324

    Article  CAS  PubMed  Google Scholar 

  9. Chia M, Schwartz TJ, Shanks BH, Dumesic JA (2012) Green Chem 14:1850

    Article  CAS  Google Scholar 

  10. Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493

    Article  CAS  Google Scholar 

  11. Wettstein SG, Alonso DM, Chong Y, Dumesic JA (2012) Energy Environ Sci 5:8199

    Article  CAS  Google Scholar 

  12. Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) Green Chem 10:238–242

    Article  Google Scholar 

  13. Mellmer MA, Martin Alonso D, Luterbacher JS, Gallo JMR, Dumesic JA (2014) Green Chem 16:4659–4662

    Article  CAS  Google Scholar 

  14. Mellmer MA, Sener C, Gallo JMR, Luterbacher JS, Alonso DM, Dumesic J (2014) Angew Chem Int Ed Engl 53:11872–11875

    Article  CAS  PubMed  Google Scholar 

  15. Bond JQ, Wang D, Alonso DM, Dumesic JA (2011) J Catal 281:290–299

    Article  CAS  Google Scholar 

  16. Bond JQ, Alonso DM, West RM, Dumesic JA (2010) Langmuir 26:16291–16298

    Article  CAS  PubMed  Google Scholar 

  17. Wang D, Hakim SH, Alonso DM, Dumesic JA (2013) Chem Commun (Cambridge) 49:7040–7042

    Article  CAS  Google Scholar 

  18. Dorko CL, Ford GT, Baggett MS, Behling AR, Carmen HE (2014) Kirk-Othmer encyclopedia of chemical technology. Wiley, Hoboken, pp 1–19

    Book  Google Scholar 

  19. Werle P, Morawietz M, Lundmark S, Sörensen K, Karvinen E, Lehtonen J (2008) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  20. Market sand Markets (2014) 1,6-Hexanediol market by application (polyurethanes, coatings, acrylates, adhesives, unsaturated polyester resins, plasticizers, and others) and by geography (NA, Europe, Asia-Pacific, & ROW) - Trends and Forecasts to 2019, 2014

  21. Oppenheim JP, Dickerson GL (2003) Kirk-Othmer encyclopedia of chemical technology. Wiley, Hoboken

    Google Scholar 

  22. Sridhar S, Carter RG (2001) Kirk-Othmer encyclopedia of chemical technology. Wiley, Hoboken

    Google Scholar 

  23. Beller M, Seayad J, Tillack A, Jiao H (2004) Angew Chem Int Ed Engl 43:3368–3398

    Article  CAS  PubMed  Google Scholar 

  24. Manzer L US6835849B2, 2004, 1.

  25. Serrano-Ruiz JC, Luettich J, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2006) J Catal 241:45–55

    Article  CAS  Google Scholar 

  26. Aramendía MA, Boráu V, Jiménez C, Marinas A, Marinas JM, Navío JA, Ruiz JR, Urbano FJ (2004) Colloids Surf A 234:17–25

    Article  CAS  Google Scholar 

  27. Ono Y, Hattori H (2011) Solid base catalysis, vol 101. Springer, Berlin

    Google Scholar 

  28. Brown JM, Conn AD, Pilcher G, Leito MLP, Meng-Yan Y (1989) J Chem Soc Chem Commun. https://doi.org/10.1039/C39890001817

    Article  Google Scholar 

  29. Stedjan MK, Augspurger JD (2015) J Phys Org Chem 28:298–303

    Article  CAS  Google Scholar 

  30. Boonphong S, Kittakoop P, Isaka M, Pittayakhajonwut D, Tanticharoen M, Thebtaranonth Y (2001) J Nat Prod 64:965–967

    Article  CAS  PubMed  Google Scholar 

  31. Li X, Sattler I, Lin W (2007) J Antibiot (Tokyo) 60:191–195

    Article  CAS  Google Scholar 

  32. Barrow CJ (1997) J Nat Prod 60:1023–1025

    Article  CAS  Google Scholar 

  33. Colmenares AJ, Durán-Patrón RM, Hernández-Galán R, Collado IG (2002) J Nat Prod 65:1724–1726

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation Engineering Research Center for Biorenewable Chemicals (CBiRC), under Award Number EEC-0813570. The authors would like to thank the Magnetic Resonance Facility in the Chemistry Department of the University of Wisconsin-Madison for use of the Bruker Avance III 500 gifted by Paul J. Bender. The use of facilities supported by the Wisconsin Materials Research Science and Engineering Center is also acknowledged (DMR-1121288). We thank Leo Manzer and Thomas Schwartz for helpful discussions about lactone ring-opening. We thank Heike Hofstetter for discussions about NMR analyses. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Dumesic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brentzel, Z.J., Ball, M.R. & Dumesic, J.A. Selective Production of Terminally Unsaturated Methyl Esters from Lactones Over Metal Oxide Catalysts. Catal Lett 148, 3072–3081 (2018). https://doi.org/10.1007/s10562-018-2507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2507-0

Keywords

Navigation