Skip to main content
Log in

A New Green and Efficient Brønsted: Lewis Acidic DES for Pyrrole Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Deep eutectic solvents (DESs) are fluids composed of different Lewis or Brønsted acids and bases, generally acknowledged as new analogues to ionic liquids (ILs), because of their similar characteristics, but with more advantages related to preparation cost, environmental impact etc. Their preparation involve the simple mixing of two components generally with moderate heating that are inexpensive, non-toxic, biodegradable and the resulting mixture is capable to overcome the drawbacks of conventional organic solvents and ILs. Chemical reactions with these materials are significantly less hazardous and they can act as catalysts as well as reaction media. Here, three new DESs based on ZrOCl2·8H2O in combination with urea, ethylene glycol and glycerol are introduced. Physicochemical properties like phase behaviour, Freezing point, density, viscosity, thermal stability and miscibility properties in common solvents are determined. In addition, a new method for the determination of acidity of DESs having both Brønsted and Lewis sites is also introduced in this work. A convenient synthesis of pyrrole through Paal–Knorr reaction is reported using a variety of amines which are used to establish the importance of this catalyst in organic reactions. The products are analysed by GC–MS, 1H NMR and 13C NMR. By comparing the three DESs, DES 1 (formed from ZrOCl2·8H2O with urea) has the lowest density, viscosity, highest acidity and thermal stability. It was shown to be an excellent green catalyst for Paal–Knorr reaction. Reusability of the catalyst was also achieved up to 4 runs, without significant loss in its catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) ACS Sustain Chem Eng 2:1063–1071

    Article  CAS  Google Scholar 

  2. Wang X, Jiang W, Zhu W, Li H, Yin S, Chang Y, Li H (2016) RSC Adv 6:30345–30352

    Article  CAS  Google Scholar 

  3. Hong S, Lian H, Sun X, Pan D, Carranza A, Pojman JA, Mota-Morales JD (2016) RSC Adv 6:89599–89608

    Article  CAS  Google Scholar 

  4. Agostino CD, Harris RC, Abbott AP, Gladdena LF, Mantle MD (2011) Phys Chem Chem Phys 13:21383–22139

    Article  CAS  PubMed  Google Scholar 

  5. Smith EL, Abbott AP, Ryder KS (2014) Chem Rev 114:11060–11082

    Article  CAS  PubMed  Google Scholar 

  6. Nguyen HT, Tran PH (2016) RSC Adv 6:98365–98368

    Article  CAS  Google Scholar 

  7. Liu P, Hao J, Mo L, Zhang Z (2015) RSC Adv 5:48675–48704

    Article  CAS  Google Scholar 

  8. Vidal C, Merz L, Garcia-Alvarez J (2015) Green Chem 17:3870–3878

    Article  CAS  Google Scholar 

  9. Tran PH, Hang AT (2018) RSC Adv 8:11127–11133

    Article  CAS  Google Scholar 

  10. Anastas PT, Warner JC (1998) Green chemistry theory and practice. Oxford University Press, Cambridge

    Google Scholar 

  11. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) J Am Chem Soc 126:9142–9147

    Article  CAS  PubMed  Google Scholar 

  12. Ge X, Gu C, Wang X, Tu J (2017) J Mater Chem A 5:8209–8229

    Article  CAS  Google Scholar 

  13. Abbott AP, Barron JC, Ryder KS, Wilson D (2007) Chem Eur J 13:6495–6501

    Article  CAS  PubMed  Google Scholar 

  14. Abbott AP, Al-Barzinjy AA, Abbott PD, Frisch G, Harris RC, Hartley J, Ryder KS (2014) Phys Chem Chem Phys 16:9047–9055

    Article  CAS  PubMed  Google Scholar 

  15. García G, Aparicio S, Ullah R, Atilhan M (2015) Energy Fuels 29:2616–2644

    Article  CAS  Google Scholar 

  16. López-Porfiri P, Brennecke JF, Gonzalez-Miquel M (2016) J Chem Eng Data 61:4245–4251

    Article  CAS  Google Scholar 

  17. Pandey A, Bhawna, Dhingra D, Pandey S (2017) J Phys Chem B 121:4202–4212

    Article  CAS  PubMed  Google Scholar 

  18. Alonso DA, Baeza A, Chinchilla A, Guillena G, Pastor IM, Ramon DJ (2016) Eur J Org Chem 4:612–632

    Article  CAS  Google Scholar 

  19. Pena-Pereira F, Kloskowski A, Namieśnik J (2015) Green Chem 17:3687–3705

    Article  CAS  Google Scholar 

  20. Vidal C, Garcia-Alvarez J, Hernan-Gomez A, Kennedy AR, Hevia E (2016) Angew Chem Int Ed 55:16145–16148

    Article  CAS  Google Scholar 

  21. Obst M, Srivastava A, Baskaran S, König B (2018) Synlett 29:185–188

    Article  CAS  Google Scholar 

  22. Gore S, Baskaran S, König B (2011) Green Chem 13:1009–1013

    Article  CAS  Google Scholar 

  23. Gore S, Baskaran S, König B (2012) Org Lett 14:4568–4571

    Article  CAS  PubMed  Google Scholar 

  24. Tao L, Wang ZJ, Yan TH, Liu YM, He HY, Cao Y (2017) ACS Catal 7:959–964

    Article  CAS  Google Scholar 

  25. Zhang L, Zhang J, Ma J, Cheng DJ, Tan B (2017) J Am Chem Soc 139:1714–1717

    Article  CAS  PubMed  Google Scholar 

  26. Jisha KA, Sreekumar K (2017) Catal Lett 147:964–975

    Article  CAS  Google Scholar 

  27. Nguyen HT, Chau DKN, Tran PH (2017) New J Chem 41:12481–12489

    Article  Google Scholar 

  28. Estevez V, Villacampa M, Carlos Menendez JC (2013) Chem Commun 49:591–593

    Article  CAS  Google Scholar 

  29. Arcadi A, Rossi E (1998) Tetrahedron 54:15253–15272

    Article  CAS  Google Scholar 

  30. Katritzky AR, Jiang J, Steel PJ (1994) J Org Chem 59:4551–4556

    Article  CAS  Google Scholar 

  31. Kamal A, Faazil S, Malik MS, Balakrishna M, Bajee S, Siddiqui MRH, Alarifi A (2016) Arab J Chem 9:542–549

    Article  CAS  Google Scholar 

  32. Barton DHR, Kervagoret J, Zard SZ (1990) Tetrahedron 46:5340–7587

    Google Scholar 

  33. Yuan SZ, Liu J, Xu L (2010) Chin Chem Lett 21:664–668

    Article  CAS  Google Scholar 

  34. Aghapoor K, Ebadi-Nia L, Mohsenzadeh F, Morad MM, Balavar Y, Darabi HR (2012) J Organomet Chem 708:25–30

    Article  CAS  Google Scholar 

  35. Curini M, Montanari F, Rosati O, Lioy E, Margarita R (2003) Tetrahedron Lett 44:3923–3925

    Article  CAS  Google Scholar 

  36. Rahmatpour A (2012) J Organomet Chem 712:15–19

    Article  CAS  Google Scholar 

  37. Banik BK, Samajdar S, Banik I (2004) J Org Chem 69:213–216

    Article  CAS  PubMed  Google Scholar 

  38. Yu SX, Le Quesne PW (1995) Tetrahedron Lett 36:6205–6208

    Article  CAS  Google Scholar 

  39. Chen CY, Guo XY, Lu GQ, Pedersen CM, Qiao Y, Hou XL, Wang YX (2017) New Carbon Mater 32:160–167

    Article  Google Scholar 

  40. Wang B, Gu Y, Luo C, Yang T, Yang L, Suo J (2004) Tetrahedron Lett 45:3417–3419

    Article  CAS  Google Scholar 

  41. Dallinger D, Kappe CO (2007) Chem Rev 107:2563–2591

    Article  CAS  PubMed  Google Scholar 

  42. Darabi HR, Aghapoor K, Farahani AD, Mohsenzadeh F (2012) Environ Chem Lett 10:369–375

    Article  CAS  Google Scholar 

  43. Veisi H (2010) Tetrahedron Lett 51:2109–2114

    Article  CAS  Google Scholar 

  44. Chen JX, Liu MC, Yang XL, Ding JC, Wu HY (2008) J Braz Chem Soc 19:877–883

    Article  CAS  Google Scholar 

  45. Handy S, Lavender K (2013) Tetrahedron Lett 54:4377–4379

    Article  CAS  Google Scholar 

  46. Yadav JS, Reddy BV, Eashwaraiah B, Gupta MK (2004) Tetrahedron Lett 45:5873–5876

    Article  CAS  Google Scholar 

  47. Chen J, Wu H, Zheng Z, Jin C, Zhang X, Su W (2006) Tetrahedron Lett 47:5383–5387

    Article  CAS  Google Scholar 

  48. De SK (2008) Heteroat Chem 19:592–595

    Article  CAS  Google Scholar 

  49. Ballini R, Barboni L, Bosica G, Petrini M (2000) Synlett 11:391–393

    Google Scholar 

  50. Banik BK, Banik I, Renteria M, Dasgupta SK (2005) Tetrahedron Lett 46:2643–2645

    Article  CAS  Google Scholar 

  51. Cheraghi S, Saberi D, Heydari A (2014) Catal Lett 144:1339–1343

    Article  CAS  Google Scholar 

  52. Moradgholi F, Lari J, Baratian Y (2016) Russ J Gen Chem 86:2924–2927

    Article  CAS  Google Scholar 

  53. Devi A, Shallu SML, Singh J (2012) Synth Commun 42:1480–1488

    Article  CAS  Google Scholar 

  54. Abbott AP, Capper G, Davies DL, Rasheed R. Tambyrajah KV (2003) Chem Commun 1:70–71

    Article  CAS  Google Scholar 

  55. Naser J, Mjalli F, Jibril B, Al-Hatmi S, Gano Z (2013) Int J Chem Eng Appl 4:114–118

    CAS  Google Scholar 

  56. Francisco M, Bruinhorst A, Zubeir LF, Peters CJ, Kroon MC (2013) Fluid Phase Equilib 340:77–84

    Article  CAS  Google Scholar 

  57. Yusof R, Abdulmalek E, Sirat K, Rahman MBA (2014) Molecules 19:8011–8026

    Article  CAS  PubMed  Google Scholar 

  58. Sanchez LG, Espel JR, Onink F, Meindersma GW, de Haan AB (2009) J Chem Eng Data 54:2803–2812

    Article  CAS  Google Scholar 

  59. Durand E, Lecomte J, Villeneuve P (2013) Eur J Lipid Sci Technol 115:379–385

    Article  CAS  Google Scholar 

  60. Krishnakumar V, Vindhya NG, Mandal BK, Nawaz Khan FR (2014) Ind Eng Chem Res 53:10814–10819

    Article  CAS  Google Scholar 

  61. Isernia LF (2013) Mater Res 16:792–802

    Article  CAS  Google Scholar 

  62. Reddy CR, Bhat YS, Nagendrappa G, Jai Prakash BS (2009) Catal Today 141:157–160

    Article  CAS  Google Scholar 

  63. Dai L, Zhao Q, Fang M, Liu R, Dong M, Jiang T (2017) RSC Adv 7:32427–32435

    Article  CAS  Google Scholar 

  64. Yang Y, Kou Y (2004) Chem Commun. https://doi.org/10.1039/B311615H

    Article  Google Scholar 

  65. Shiwei L, Congxia X, Shitao Y, Mo X, Fusheng L (2009) Chin J Catal 30:401–406

    Article  Google Scholar 

  66. Shiwei L, Congxia X, Shitao Y, Fusheng L (2008) Catal Commun 9:2030–2034

    Article  CAS  Google Scholar 

  67. Barzetti T, Selli E, Moscotti D, Forni L (1996) J Chem Soc Faraday Trans 92:1401–1407

    Article  CAS  Google Scholar 

  68. An H, Kang L, Gao W, Zhao X, Wang Y (2013) Green Sustain Chem 3:32–37

    Article  CAS  Google Scholar 

  69. Sushkevich VL, Vimont A, Travert A, Ivanova II (2015) J Phys Chem C 119:17633–17639

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank SAIF STIC, CUSAT for various analysis (TGA, DSC, 1H NMR & 13C NMR) and Cochin University of Science and Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreekumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information File 1: GC MS and NMR spectra of compounds (PDF 1509 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaibuna, M., Theresa, L.V. & Sreekumar, K. A New Green and Efficient Brønsted: Lewis Acidic DES for Pyrrole Synthesis. Catal Lett 148, 2359–2372 (2018). https://doi.org/10.1007/s10562-018-2414-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2414-4

Keywords

Navigation