Skip to main content

Advertisement

Log in

Photocatalytic Reduction of CO2 to CH3OH Coupling with the Oxidation of Amine to Imine

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The photocatalytic reduction of CO2 to organic molecules is one promising approache for both decreasing CO2 concentration in the atmosphere and storing energies. However, most of the photocatalytic reduction of CO2 cannot avoid the utilization of sacrificial agents, which are not atomic economy and restricts the practical application of the photocatalytic reduction of CO2. In this contribution, an atomic economy photocatalytic reduction of CO2 to CH3OH coupling with the oxidation of amine to imine by Cu/TiO2 was reported, which can avoid using the sacrificial agents in the reaction systems. CO2 was reduced to CH3OH by photo-induced electrons; meanwhile benzylamine was selected as the reductant to react with photo-generated holes and converted into imine with high selectivity. The results showed that the maximum conversion of benzylamine to imine is 88.7% with selectivity of 98%, and the highest yield of CH3OH is 961.4 µmol g−1 using ca.0.5 wt% Cu/TiO2 as the catalyst. And also, the reaction mechanism was also investigated by DFT calculation, which would give a detailed explanation for the reaction process.

Graphical Abstract

Schematic illustration is that maximum conversion of benzylamine to imine is 88.7% with selectivity of 98%, and the highest yield of CH3OH is 961.4 μmol g−1 using ca.0.5 wt% Cu/TiO2 as the catalyst

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  2. Pal B, Sharon M (2002) Mater Chem Phys 76:82–87

    Article  CAS  Google Scholar 

  3. Park H-A, Choi JH, Choi KM et al (2012) J Mater Chem 22:5304–5307

    Article  CAS  Google Scholar 

  4. Bessekhouad Y, Mohammedi M, Trari M (2002) Sol Energy Mater Sol Cells 73:339–350

    Article  CAS  Google Scholar 

  5. Moomaw WR, Unruh GC (1997) Environ Dev Econ 2:451–463

    Article  Google Scholar 

  6. Takeda H, Cometto C, Ishitani O et al (2016) ACS Catal 7:70–88

    Article  CAS  Google Scholar 

  7. Li Y, Lu G, Li S (2001) Appl Catal A 214:179–185

    Article  CAS  Google Scholar 

  8. Nguyen T-V, Kim KJ, Yang OB (2005) J Photochem Photobiol A 173:56–63

    Article  CAS  Google Scholar 

  9. Tamaki Y, Ishitani O (2017) ACS Catal 7:3394–3409

    Article  CAS  Google Scholar 

  10. Wang L, Zhang X, Yang L et al (2015) Catal Sci Technol 5:4800–4805

    Article  CAS  Google Scholar 

  11. Fujishima A, Nagahara LA, Yoshiki H et al (1994) Electrochim Acta 39:1229–1236

    Article  CAS  Google Scholar 

  12. Lin L, Ou H, Zhang Y et al (2016) ACS Catal 6:3921–3931

    Article  CAS  Google Scholar 

  13. Wang D, Liu Z, Yang W (2017) ACS Catal 7:2744–2752

    Article  CAS  Google Scholar 

  14. Schneider TW, Ertem MZ, Muckerman JT et al (2016) ACS Catal 6:5473–5481

    Article  CAS  Google Scholar 

  15. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Angew Chem Int Ed 52:7372–7408

    Article  CAS  Google Scholar 

  16. Zhou Y, Tian Z, Zhao Z et al (2011) ACS Appl Mater Interfaces 3:3594–3601

    Article  CAS  PubMed  Google Scholar 

  17. Xing M, Shen F, Qiu B et al (2014) Sci Rep 4:6341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang Y, Zhang T, Le L et al (2014) Sci Rep 4:6341

    Google Scholar 

  19. Pan J, Wu X, Wang L et al (2011) Chem Commun 47:8361–8363

    Article  CAS  Google Scholar 

  20. Tan L, Chai S, Mohamed AR (2012) ChemSusChem 5:1868–1882

    Article  CAS  PubMed  Google Scholar 

  21. Liu L, Zhao C, Pitts D et al (2014) Catal Sci Technol 4:1539–1546

    Article  CAS  Google Scholar 

  22. Li H, Zhang X, MacFarlane DR (2015) Adv Energy Mater 5:1401077

    Article  CAS  Google Scholar 

  23. Liang Y, Vijayan BK, Gray KA et al (2011) Nano Lett 11:2865–2870

    Article  CAS  PubMed  Google Scholar 

  24. Inoue T, Fujishima A, Konishi S et al (1979) Nature 277:637–638

    Article  CAS  Google Scholar 

  25. Fu Y, Sun D, Chen Y et al (2012) Angew Chem Int Ed 124:3420–3423

    Article  Google Scholar 

  26. Simon T, Bouchonville N, Berr MJ et al (2014) Nat Mater 13:1013–1018

    Article  CAS  PubMed  Google Scholar 

  27. Huang D, Yin L, Niu J (2016) Environ Sci Technol 50:5857–5863

    Article  CAS  PubMed  Google Scholar 

  28. Sun Y, Cheng H, Gao S et al (2012) Angew Chem Int Ed 51:8727–8731

    Article  CAS  Google Scholar 

  29. Guan M, Xiao C, Zhang J et al (2013) J Am Chem Soc 135:10411–10417

    Article  CAS  PubMed  Google Scholar 

  30. Spadavecchia F, Ceotto M, Presti L et al (2014) Chin J Chem 32:1195–1213

    Article  CAS  Google Scholar 

  31. Yamada N, Suzumura M, Koiwa F et al (2013) Water Res 47:2770–2776

    Article  CAS  PubMed  Google Scholar 

  32. De Angelis F, Di Valentin C, Fantacci S et al (2014) Chem Rev 114:9708–9753

    Article  CAS  PubMed  Google Scholar 

  33. Zheng Z, Zhao J, Yuan Y et al (2013) Chem Eur J 19:5731–5741

    Article  CAS  PubMed  Google Scholar 

  34. Jiao W, Wang L, Liu G et al (2012) ACS Catal 2:1854–1859

    Article  CAS  Google Scholar 

  35. Zeng G, Qiu J, Li Z et al (2014) ACS Catal 4:3512–3516

    Article  CAS  Google Scholar 

  36. Ramesha GK, Brennecke JF, Kamat PV (2014) ACS Catal 4:3249–3254

    Article  CAS  Google Scholar 

  37. Liu S, Liu J, Li X et al (2015) Plasma Processes Polym 12:422–430

    Article  CAS  Google Scholar 

  38. Marschall R, Wang L (2014) Catal Today 225:111–135

    Article  CAS  Google Scholar 

  39. Li Y, Xu D, Oh J II et al (2012) ACS Catal 2:391–398

    Article  CAS  Google Scholar 

  40. Li M, Zhang S, Peng Y et al (2015) RSC Adv 5:7363–7369

    Article  CAS  Google Scholar 

  41. Liu L, Chen X (2014) Chem Rev 114:9890–9918

    Article  CAS  PubMed  Google Scholar 

  42. Zuo F, Bozhilov K, Dillon RJ et al (2012) Angew Chem Int Ed 124:6327–6330

    Article  Google Scholar 

  43. Xing M, Li X, Zhang J (2014) Sci Rep 4:5493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Angelis F, Fantacci S, Selloni A et al (2007) Nano Lett 7:3189–3195

    Article  CAS  PubMed  Google Scholar 

  45. Zanella R, Rodríguez-González V, Arzola Y ACS Catal 2:1–11

  46. Borlaf M, Colomer MT, de Andrés A et al (2014) Eur J Inorg Chem 30:5152–5159

    Article  CAS  Google Scholar 

  47. Liyanage AD, Perera SD, Tan K et al (2014) ACS Catal 4:577–584

    Article  CAS  Google Scholar 

  48. Song K, Han X, Shao G (2013) Alloys Compd 551:118–124

    Article  CAS  Google Scholar 

  49. Yu X, Hou T, Sun X et al (2012) Chem Phys Chem 13:1514–1521

    Article  CAS  PubMed  Google Scholar 

  50. Priebe JB, Radnik J, Lennox AJJ et al (2015) ACS Catal 5:2137–2148

    Article  CAS  Google Scholar 

  51. Chen P, Khetan A, Yang F et al (2017) ACS Catal 7:1197–1206

    Article  CAS  Google Scholar 

  52. Du Q, Wu J, Yang H (2013) ACS Catal 4:144–151

    Article  CAS  Google Scholar 

  53. Ola O, Maroto-Valer MM (2015) J Photochem Photobiol C 24:16–42

    Article  CAS  Google Scholar 

  54. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  55. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  56. Frisch MG, Trucks W, Schlegel HB et al (2009) Gaussian, Inc., Wallingford CT

  57. Poulston S, Parlett PM, Stone P et al (1996) Surf Interface Anal 24:811–820

    Article  CAS  Google Scholar 

  58. Ghodselahi T, Vesaghi MA, Shafiekhani A et al (2008) Appl Surf Sci 255:2730–2734

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the support of the National Natural Science Foundation of China (21363014 and 21103082). This work was supported by the Natural Science Foundation of the Jiangxi Province of China (Grant Nos. 20142BCB23003 and 20143ACB21021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongming Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 730 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Yu, Q. & Wang, H. Photocatalytic Reduction of CO2 to CH3OH Coupling with the Oxidation of Amine to Imine. Catal Lett 148, 2382–2390 (2018). https://doi.org/10.1007/s10562-018-2412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2412-6

Keywords

Navigation