Advertisement

Catalysis Letters

, Volume 148, Issue 7, pp 1965–1977 | Cite as

Pt Metal Supported and Pt4+ Doped La1−xSrxCoO3: Non-performance of Pt4+ and Reactivity Differences with Pt Metal

  • Anuj Bisht
  • Amita Sihag
  • Akkireddy Satyaprasad
  • Sairam S. Mallajosyala
  • Sudhanshu Sharma
Article
  • 198 Downloads

Abstract

In the present work, we correlate the CO-oxidation activity with the oxidation state of platinum with combined experimental and DFT calculations. XPS reveals that Pt supported La1−xSrxCoO3 (Pt/La1−xSrxCoO3) and Pt doped La1−xSrxCoO3 (La1−xSrxCo1−yPtyO3) consist of Pt in 0 and + 4 oxidation states respectively. Further, catalytic CO oxidation over Pt-doped and Pt-supported La1−xSrxCoO3 in the presence of oxygen demonstrates the lowest activity of the doped compound. Pt supported La1−xSrxCoO3 showed the highest activity with almost 100% conversion at 150 °C. La1−xSrxCo1−yPtyO3 was slightly inferior to the blank La1−xSrxCoO3 suggesting that Pt4+ is an inactive or non-performing entity in the doped compound. Temperature programmed desorption (TPD) demonstrates the low amount of CO desorption from La1−xSrxCoO3 and Pt-doped La1−xSrxCoO3 due to the very weak interaction. On the other hand, Pt-supported La1−xSrxCoO3 shows a substantial amount of CO desorption due to strong interaction and large number of metallic sites available for adsorption. This was supported by density functional theory (DFT) based calculations which showed that Pt-supported La1−xSrxCoO3 surface has higher binding energy of CO than the La1−xSrxCoO3 surface confirming the strong CO interaction. Transient responses using mass spectrometer suggest that the Pt supported perovskite utilizes the lattice oxygen for the reaction and vacancies are formed which gets filled with gaseous oxygen. No such phenomenon is observed in the doped compound demonstrating the mechanistic differences in the two catalysts. Often, during the synthesis of Pt-based compounds, it is common to get mixed phases of platinum including Pt4+. From this study, it can be established that one can discard the contribution from Pt4+ in the calculations of kinetic data such as rate or turnover number because this oxidation state is inactive/nonperforming.

Graphical Abstract

Pt supported perovskite (Pt/LSCO) utilizes the lattice oxygen for the CO oxidation reaction and the vacancies formed get filled with gaseous oxygen. No such phenomenon is observed in Pt doped perovskite (LSPtCO).

Keywords

Pt supported La1−xSrxCoO3 Pt-doped La1−xSrxCoO3 Interaction Carbon monoxide oxidation Perovskite Temperature-programmed reduction (TPR) Temperature-programmed desorption (TPD) DFT 

Notes

Acknowledgements

We gratefully acknowledge IIT Gandhinagar and DST (SR/S2/RJN-24/2012) for funding. Anuj is thankful to IIT Gandhinagar for fellowship. AB would like to thank Mr. Bhanu Pratap Gangwar for his help in conducting XRD analysis and Mr. Ashish Kar for assisting in graphical abstract.

References

  1. 1.
    Boukamp BA (2003) Nat Mater 2:294–296CrossRefPubMedGoogle Scholar
  2. 2.
    Mizoguchi H, Chen P, Boolchand P, Ksenofontov V, Felser C, Barnes PW, Woodward PM (2013) Chem Mater 25:3858–3866CrossRefGoogle Scholar
  3. 3.
    Chiarello GL, Grunwaldt J-D, Ferri D, Krumeich F, Oliva C, Forni L, Baiker A (2007) J Catal 252:127–136CrossRefGoogle Scholar
  4. 4.
    Peña MA, Fierro JLG (2001) Chem Rev 101:1981–2018CrossRefPubMedGoogle Scholar
  5. 5.
    Voorhoeve RJH, Johnson DW, Remeika JP, Gallagher PK (1977) Science 195:827–833CrossRefPubMedGoogle Scholar
  6. 6.
    Yang W, Zhang R, Chen B, Bion N, Duprez D, Royer S (2012) J Catal 295:45–58CrossRefGoogle Scholar
  7. 7.
    Rida K, Benabbas A, Bouremmad F, Peña MA, Martínez-Arias A (2006) Catal Commun 7:963–968CrossRefGoogle Scholar
  8. 8.
    Read MSD, Saiful Islam M, Watson GW, King F, Hancock FE (2000) J Mater Chem 10:2298–2305CrossRefGoogle Scholar
  9. 9.
    Ye J, Yu Y, Meng M, Jiang Z, Ding T, Zhang S, Huang Y (2013) Catal Sci Technol 3:1915–1918CrossRefGoogle Scholar
  10. 10.
    Bisht A, Zhang P, Shivakumara C, Sharma S (2015) J Phys Chem C 119:14126–14134CrossRefGoogle Scholar
  11. 11.
    Zhang HM, Shimizu Y, Teraoka Y, Miura N, Yamazoe N (1990) J Catal 121:432–440CrossRefGoogle Scholar
  12. 12.
    Lee YN, Lago RM, Fierro JLG, Cortés V, Sapiña F, Martínez E (2001) Appl Catal A 207:17–24CrossRefGoogle Scholar
  13. 13.
    Merino NA, Barbero BP, Grange P, Cadús LE (2005) J Catal 231:232–244CrossRefGoogle Scholar
  14. 14.
    Li X, Chen C, Liu C, Xian H, Guo L, Lv J, Jiang Z, Vernoux P (2013) ACS Catal 3:1071–1075CrossRefGoogle Scholar
  15. 15.
    Rajesh T, Upadhyay A, Sinha AK, Deb SK, Devi RN (2014) J Mol Catal A 395:506–513CrossRefGoogle Scholar
  16. 16.
    Tanaka H, Taniguchi M, Uenishi M, Kajita N, Tan I, Nishihata Y, Mizuki JI, Narita K, Kimura M, Kaneko K (2006) Angew Chem 118:6144–6148CrossRefGoogle Scholar
  17. 17.
    Bechthold P, Pronsato ME, Pistonesi C (2015) Appl Surf Sci 347:291–298CrossRefGoogle Scholar
  18. 18.
    Ge Q, Song C, Wang L (2006) Comput Mater Sci 35:247–253CrossRefGoogle Scholar
  19. 19.
    Sun L, Li G, Chen W, Luo F, Hu J, Qin H (2014) Appl Surf Sci 309:128–132CrossRefGoogle Scholar
  20. 20.
    Sharma S, Hegde MS (2009) J Chem Phys 130:114706CrossRefPubMedGoogle Scholar
  21. 21.
    Johnson DW Jr, Gallagher PK, Wertheim GK, Vogel EM (1977) J Catal 48:87–97CrossRefGoogle Scholar
  22. 22.
    Bisht A, Gangwar B, Anupriya T, Sharma S (2014) J Solid State Electrochem 18:197–206CrossRefGoogle Scholar
  23. 23.
    Bera P, Malwadkar S, Gayen A, Satyanarayana CVV, Rao BS, Hegde MS (2004) Catal Lett 96:213–219CrossRefGoogle Scholar
  24. 24.
    Feinstein-Jaffe I, Efraty A (1986) J Mol Catal 35:285–302CrossRefGoogle Scholar
  25. 25.
    Gangwar BP, Maiti SC, Sharma S (2017) J Solid State Chem 256:109–115CrossRefGoogle Scholar
  26. 26.
    Padole MC, Gangwar BP, Pandey A, Singhal A, Sharma S, Deshpande PA (2017) Phys Chem Chem Phys 19:14148–14159CrossRefPubMedGoogle Scholar
  27. 27.
    Paolo G, Stefano B, Nicola B, Matteo C, Roberto C, Carlo C, Davide C, Guido LC, Matteo C, Ismaila D, Andrea Dal C, Stefano de G, Stefano F, Guido F, Ralph G, Uwe G, Christos G, Anton K, Michele L, Layla M-S, Nicola M, Francesco M, Riccardo M, Stefano P, Alfredo P, Lorenzo P, Carlo S, Sandro S, Gabriele S, Ari PS, Alexander S, Paolo U, Renata MW (2009) J Phys: Condens Matter 21:395502Google Scholar
  28. 28.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871CrossRefGoogle Scholar
  29. 29.
    Vanderbilt D (1990) Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  30. 30.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefPubMedGoogle Scholar
  31. 31.
    Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223–16233CrossRefGoogle Scholar
  32. 32.
    Ravindran P, Korzhavyi PA, Fjellvåg H, Kjekshus A (1999) Phys Rev B 60:16423–16434CrossRefGoogle Scholar
  33. 33.
    Oganov AR, Glass CW (2006) J Chem Phys 124:244704CrossRefPubMedGoogle Scholar
  34. 34.
    Lyakhov AO, Oganov AR, Stokes HT, Zhu Q (2013) Comput Phys Commun 184:1172–1182CrossRefGoogle Scholar
  35. 35.
    Oganov AR, Lyakhov AO, Valle M (2011) Acc Chem Res 44:227–237CrossRefPubMedGoogle Scholar
  36. 36.
    Xiao L, Wang L (2004) J Phys Chem A 108:8605–8614CrossRefGoogle Scholar
  37. 37.
    Yu H-C, Fung K-Z, Guo T-C, Chang W-L (2004) Electrochim Acta 50:811–816CrossRefGoogle Scholar
  38. 38.
    Benito P, Herrero M, Labajos FM, Rives V, Royo C, Latorre N, Monzon A (2009) Chem Eng J 149:455–462CrossRefGoogle Scholar
  39. 39.
    Chica A, Sayas S (2009) Catal Today 146:37–43CrossRefGoogle Scholar
  40. 40.
    Futai M, Yonghua C, Louhui (1986) React Kinet Catal Lett 31:47–54CrossRefGoogle Scholar
  41. 41.
    Kehoe AB, Scanlon DO, Watson GW (2011) Chem Mater 23:4464–4468CrossRefGoogle Scholar
  42. 42.
    McFarland EW, Metiu H (2013) Chem Rev 113:4391–4427CrossRefPubMedGoogle Scholar
  43. 43.
    Dacquin JP, Cabié M, Henry CR, Lancelot C, Dujardin C, Raouf SR, Granger P (2010) J Catal 270:299–309CrossRefGoogle Scholar
  44. 44.
    Dacquin JP, Lancelot C, Dujardin C, Cordier-Robert C, Granger P (2011) J Phys Chem C 115:1911–1921CrossRefGoogle Scholar
  45. 45.
    Giraudon JM, Elhachimi A, Wyrwalski F, Siffert S, Aboukaïs A, Lamonier JF, Leclercq G (2007) Appl Catal B 75:157–166CrossRefGoogle Scholar
  46. 46.
    Sato K, Adachi K, Takita Y, Nagaoka K (2014) ChemCatChem 6:784–789CrossRefGoogle Scholar
  47. 47.
    Hammer B, Nielsen OH, Nrskov JK (1997) Catal Lett 46:31–35CrossRefGoogle Scholar
  48. 48.
    Nolan M, Watson GW (2006) J Phys Chem B 110:16600–16606CrossRefPubMedGoogle Scholar
  49. 49.
    Xu J, Henriksen PN, Yates JT (1994) Langmuir 10:3663–3667CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anuj Bisht
    • 1
  • Amita Sihag
    • 1
  • Akkireddy Satyaprasad
    • 2
  • Sairam S. Mallajosyala
    • 1
  • Sudhanshu Sharma
    • 1
  1. 1.Department of ChemistryIndian Institute of Technology GandhinagarGandhinagarIndia
  2. 2.FCIPTInstitute for Plasma Research (IPR)GandhinagarIndia

Personalised recommendations