Skip to main content

Advertisement

Log in

Accelerating CO2 Absorption in Aqueous Amine Solutions at High Temperature with Carbonic Anhydrase in Magnetic Nanogels

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We report a facile method for encapsulation of carbonic anhydrase (CA) with magnetic nanogel (MNP-CA nanogel), in which amino and vinyl groups are first grafted onto the surface of magnetic Fe3O4 nanoparticles (MNP) using 3-aminopropyltriethoxysilane (APTES) and N-acryloylsuccinimide (NAS), followed by CA attachment with glutaraldehyde and in situ polymerization with acrylamide. The MNP-CA nanogel shows much improved thermostability at elevated temperatures, e.g. staying unchanged at 60 °C for 80 min, owing to multiple linkage with the hydrophilic polymer network coated at the MNP surface. Addition of the MNP-CA nanogel into a methyldiethanolamine (MDEA) solution at an ultralow mass ratio (1:104) is able to enhance the CO2 absorption rate at 60 °C by 1.45 fold. The CA-enhanced mass transport of the absorbate has been demonstrated in a wetted-wall column, in which the MNP-CA nanogel increases the total mass transfer coefficient in the gas phase (KG) by 4.61 fold compared with that determined in the MDEA solution. The greatly increased absorption performance and much enhanced stability make MNP-CA nanogel appealing for industrial applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang Q, Luo J, Zhong Z, Borgna A (2011) Energy Environ Sci 4:42

    Article  CAS  Google Scholar 

  2. Hicks JC, Drese JH, Fauth DJ, Gray ML, Qi G, Jones CW (2008) J Am Chem Soc 130:2902

    Article  CAS  PubMed  Google Scholar 

  3. Rao AB, Rubin ES (2002) Environ Sci Technol 36:4467

    Article  CAS  PubMed  Google Scholar 

  4. Rochelle GT (2009) Science 325:1652

    Article  CAS  PubMed  Google Scholar 

  5. Chowdhury FA, Yamada H, Higashii T, Goto K, Onoda M (2013) Ind Eng Chem Res 52:8323

    Article  CAS  Google Scholar 

  6. Sly WS, Hu PY (1995) Annu Rev Biochem 64:375

    Article  CAS  PubMed  Google Scholar 

  7. Zhang S, Zhang Z, Lu Y, Rostam-Abadi M, Jones A (2011) Bioresour Technol 102:10194

    Article  CAS  PubMed  Google Scholar 

  8. Russo M, Olivieri G, Marzocchella A, Salatino P, Caramuscio P, Cavaleiro C (2013) Sep Purif Technol 107:331

    Article  CAS  Google Scholar 

  9. Vinoba M, Bhagiyalakshmi M, Grace AN, Kim DH, Yoon Y, Nam SC, Baek IH, Jeong SK (2013) J Phys Chem B 117:5683

    Article  CAS  PubMed  Google Scholar 

  10. Kunze A-K, Dojchinov G, Haritos VS, Lutze P (2015) Appl Energy 156:676

    Article  CAS  Google Scholar 

  11. Aaron D, Tsouris C (2005) Sep Sci Technol 40:321

    Article  CAS  Google Scholar 

  12. Yeh JT, Pennline HW, Resnik KP (2001) Energy Fuels 15:274

    Article  CAS  Google Scholar 

  13. Andersson B, Nyman P, Strid L (1972) Biochem Biophys Res Commun 48:670

    Article  CAS  PubMed  Google Scholar 

  14. Sarraf NS, Saboury AA, Ranjbar B, Moosavi-Movahedi AA (2004) Acta Biochim Pol 51:665

    CAS  PubMed  Google Scholar 

  15. Lavecchia R, Zugaro M (1991) FEBS Lett 292:162

    Article  CAS  PubMed  Google Scholar 

  16. Jo BH, Seo JH, Yang YJ, Baek K, Choi YS, Pack SP, Oh SH, Cha HJ (2014) ACS Catal 4:4332

    Article  CAS  Google Scholar 

  17. Alvizo O, Nguyen LJ, Savile CK, Bresson JA, Lakhapatri SL, Solis EO, Fox RJ, Broering JM, Benoit MR, Zimmerman SA (2014) Proc Natl Acad Sci USA 111:16436

    Article  CAS  PubMed  Google Scholar 

  18. Yan M, Liu Z, Lu D, Liu Z (2007) Biomacromolecules 8:560

    Article  CAS  PubMed  Google Scholar 

  19. Yan M, Ge J, Liu Z, Ouyang P (2006) J Am Chem Soc 128:11008

    Article  CAS  PubMed  Google Scholar 

  20. Vinoba M, Bhagiyalakshmi M, Jeong SK, Yoon YI, Nam SC (2011) J Phys Chem C 115:20209

    Article  CAS  Google Scholar 

  21. Mornet S, Vasseur S, Grasset F, Duguet E (2004) J Mater Chem 14:2161

    Article  CAS  Google Scholar 

  22. Wang W, Xu Y, Wang DI, Li Z (2009) J Am Chem Soc 131:12892

    Article  CAS  PubMed  Google Scholar 

  23. Vinoba M, Bhagiyalakshmi M, Jeong SK, Nam SC, Yoon Y (2012) Chem Eur J 18:12028

    Article  CAS  PubMed  Google Scholar 

  24. Lin M, Lu D, Zhu J, Yang C, Zhang Y, Liu Z (2012) Chem Commun 48:3315

    Article  CAS  Google Scholar 

  25. Wilbur KM, Anderson NG (1948) J Biol Chem 176:147

    CAS  PubMed  Google Scholar 

  26. Chen RF, Kernohan JC (1967) J Biol Chem 242:5813

    CAS  PubMed  Google Scholar 

  27. Xu W, Yong Y, Wang Z, Jiang G, Wu J, Liu Z (2016) ACS Sustain Chem Eng 5:90

    Article  CAS  Google Scholar 

  28. Sang L-C, Coppens M-O (2011) Phys Chem Chem Phys 13:6689

    Article  CAS  PubMed  Google Scholar 

  29. Vertegel AA, Siegel RW, Dordick JS (2004) Langmuir 20:6800

    Article  PubMed  Google Scholar 

  30. Mes-Hartree M, Hogan C, Saddler J (1987) Biotechnol Bioeng 30:558

    Article  CAS  PubMed  Google Scholar 

  31. Whitman WG (1923) Chem Metall Eng 29:146–148

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 21520102008. The authors are grateful for the supports from Dr. Weiliang Luo and Dr. Yifei Zhang at Department of Chemical Engineering, Tsinghua University for their generous help in the preparation of MNP-CA nanogel and CO2 absorption.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10562_2018_2401_MOESM1_ESM.docx

Methods, SEM image of MNP-CA nanogel, DLS data of MNP-CA nanogel, XRD of MNP-CA nanogel and MNP, Hysteresis loop data of MNP and MNP-CA nanogel, CD spectra of CA and MNP-CA nanogel, the overall flow diagram of wetted-wall column. (DOCX 1023 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Wang, Z., Chen, G. et al. Accelerating CO2 Absorption in Aqueous Amine Solutions at High Temperature with Carbonic Anhydrase in Magnetic Nanogels. Catal Lett 148, 1827–1833 (2018). https://doi.org/10.1007/s10562-018-2401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2401-9

Keywords

Navigation